ELECTRIC PUMPS

ENGLISH

HISTORY

SACEMI WAS FOUNDED IN THE SIXTIES IN MILAN, BUT IT WAS IN 1995 IN VENETO, AND MORE PRECISELY IN NOVENTA DI PIAVE (VENICE), THAT IT CONSOLIDATED AND EXPANDED ITS PRESENCE ON THE MARKET OF ELECTRIC PUMPS FOR MACHINE TOOLS.

CUSTOMIZATION DURING ALL PHASES OF THE PRODUCTION PROCESS

VISION & MISSION

IN CLOSE COOPERATION WITH THE MAIN MANUFACTURERS TO FULFILL THE REQUIREMENTS OF THE NEW MACHINE TOOLS AND TO DESIGN ELECTRIC PUMPS, ELECTRIC MOTORS AND THEIR COMPONENT PARTS, ACCORDING TO THE NEEDS AND WITH THE SAME CRITERIA AS THE MACHINES TO WHICH THEY BELONG.

PROJECT DEPT.

THE GROUP

SACEMI-GAMAR SRL BELONGS TO THE MEZZALIRA INVESTMENT GROUP SPA, A DYNAMIC GROUP IN CONTINUOUS EXPANSION, WHICH INCLUDES OTHER COMPANIES REPRESENTING THE ITALIAN EXCELLENCE IN FURNITURE, MECHANICS AND PLASTIC.

THE DIFFERENT INDUSTRIAL SCENARIOS OF THESE COMPANIES CREATE SYNERGIES FOR A GREATER VALORISATION OF EACH ONE, THUS ADDING VALUE TO EACH ONE OF THEM, AND STILL PRESERVING THE VALUE OF THE BRANDS, THE IDENTITY AND THE POSITIONING OF THE PRODUCTS.

A HIGH LEVEL ORGANIZATION, WITH A QUALITY PRODUCTION STRUCTURE UP TO ANY CHALLENGE, COMPOSED OF A YOUNG TEAM WITH THE SAME DREAM: TO MAKE THE DIFFERENCE.

PRODUCTION

PRODUCTION

- THE PRODUCTION SITE OF SACEMI-GAMAR S.R.L., IN NOVENTA DI PIAVE (VE) EXTENDS OVER AN AREA OF 12,000 SQUARE METERS, 6,000 OF WHICH ARE COVERED.
- THE COMPANY FOCUSES ON TECHNOLOGY TO IMPROVE SPEED AND OPERATIONAL FLEXIBILITY AND ON DESIGN TO SATISFY THE MARKET DEMANDS IN REAL TIME.
- TECHNOLOGY, DESIGN AND MANUFACTURING OF MACHINE TOOLS AND EVERYTHING THAT ROTATES AROUND IT, SUCH AS ROBOTICS AND OTHER AUTOMATION SYSTEMS, ARE STRONGLY LINKED TO THE COMPONENTS, AND THE ELECTRIC PUMP AND THE ELECTRIC MOTOR ARE PART OF THEM.
- THE COMPANY IS IN CONTACT WITH VARIOUS REALITIES THAT CONSTANTLY REQUIRE NEW TECHNOLOGIES AND THEREFORE OFFERS ITSELF AS A COMPLEMENT FOR THE MANUFACTURERS OF MACHINES FOR MECHANICS, GLASS, AIR-CONDITIONING, BUILDING, AND LIQUIDS TREATMENT, CREATING AN INTEGRATION AMONG COMPONENTS, EQUIPMENT AND MACHINES.

TESTING DEPT.

LOGISTIC

Index

Declaration of Conformity	2
Production program	
Use, component and materials tables	
Hydraulic performance tables, standard running pumps	6-7
Hydraulic performance tables, HPP pumps	8
IMM 40 - 50 pumps datasheet.	10-11
IMM 63 pumps datasheet	
IMM 71 pumps datasheet	
IMM 80 pumps datasheet	
IMM 90-100 pumps datasheet.	
SPV 12-18 pumps datasheet	
SPV 25-33 pumps datasheet	
SPV 50-75 pumps datasheet	
SPV 100-150 pumps datasheet	
SP 12-18 pumps datasheet	
SP 25-33 pumps datasheet	
SP 50-75 pumps datasheet	
SP 100-150 pumps datasheet	
SQ pumps datasheet	
AU pumps datasheet	
TR pumps datasheet	
AP 100 112 groups alored impeller datasheet	
AP 100-112 pumps closed impeller datasheet	
AP 100 113	
AP 100-112 pumps open impeller datasheet	48-45
MP 63-71 pumps datasheet	
MP 80-90-100 pumps datasheet	52-33
MPC pumps datasheet	
MSPV 71-80 pumps datasheet	
EPC 63-71 pumps datasheet	
EPC 80-90 pumps datasheet	
PPI pumps datasheet	
HPP 80 multistage pumps datasheet	
HPP 90 multistage pumps datasheet	66
HPP 100 multistage pumps datasheet	67
HPP 112 multistage pumps datasheet	68
Use and maintenance	60
Troubleshooting guidelines	
Additional information culus	74

The undersigned manufacturer

Via Pacinotti. 2 - 30020 Noventa di Piave (VE) ITALY

01/12/2016

declares under its sole responsibility that:

the motor-driven pumps with the following trademark SACEMI - GAMAR

Models: AP - AU - EPC - HPP- IMM - MP - MPC - MSPV - PPI - SP - SPV - SQ - TR

(All serial numbers)

are suitable for pumping non-aggressive and non-flammable liquids and are designed and constructed, as hereby declared in this Declaration of Conformity, in accordance with the provisions of the following Community Directives:

- Machinery Directive 2006/42/EC MD
- Low Voltage Directive LVD 2014/35/EU
- Electromagnetic Compatibility Directive EMC 2014/30/EU

We also hereby declare that the following technical standards have been applied for this purpose:

UNI EN ISO-12100-1; 2010: Safety of machinery - General principles for design - Risk assessment and risk reduction

UNI EN ISO-13857; 2008: Safety of machinery, safety distances to prevent hazard zones being reached by upper and lower limbs

UNI EN ISO-13732-1; 2007: Ergonomics of the thermal environment - Methods for the assessment of human responses to contact with surfaces - Part 1: Hot surfaces

UNI EN 809; 2009: Pumps and pumping stations for liquids - General safety requirements

UNI EN ISO 20361; 2009: Liquid Pumps and pump stations - Noise Test procedures - Grades 2 and 3 of accuracy

EN - 60204-1; 2006: Safety of machinery. Electrical equipment of machines. General requirements.

EN - 60034-1: Rotating electrical machines - Rating and performance

EN - 60034-5: Degrees of protection provided by the integral design of rotating electrical machines

EN - 55022: Limits and methods of measurement of radio disturbance characteristics made by Information Technology appliances

EN - 55011 (Group 1 - Class B): Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement

In addition, only for the models and sizes specified in the catalogue also:

UNI EN 12157; 1999: Rotodynamic pumps - Coolant pump units for machine tools - Nominal flow rate, dimensions

Person in charge of setting up the Technical File:

SACEMI Via Pacinotti, 2 - 30020 Noventa di Piave (VE) ITALY

Phone +39-0421-307389 Fax. +39-0421-65428 email: info@sacemi.com

DECLARATION OF INCORPORATION

In accordance with Annex II, Part 1, Sec. B of the Machinery Directive 2006/42/EC

The same also declares that the above products to which the following declaration of incorporation relates are partly completed machines and have been designed and manufactured in accordance with the following essential requirements of the Machinery Directive 2006/42/EC: 1.1.2, 1.1.3, 1.1.5, 1.1.6, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.6, 1.3.7, 1.3.8, 1.3.9, 1.4.1, 1.4.2 (limited to 1.4.2.1), 1.5.1, 1.5.2, 1.5.4, 1.5.5, 1.5.6, 1.5.8, 1.5.10, 1.6.1 and 1.7, applicable to each type of product and that the relevant technical documentation has been compiled in accordance with Annex VIIB of said Machinery Directive 2006/42

/ĖC. In response to a reasoned request from the national authorities, we undertake to transmit the relevant information concerning the partly completed machinery to which this

declaration relates, without prejudice to our possible intellectual property rights on the product itself.

We declare that the partly completed machines referred to in this declaration must not be put into service until the final machinery where they are to be incorporated has been declared compliant in accordance with the provisions of Machinery Directive 2006/42/EC.

DECLARATION OF CONFORMITY

In accordance with the RoHS 2 Community Directive 2011/65/EC dated 8 June 2011

The undersigned manufacturer 💸

Via Pacinotti, 2 - 30020 Noventa di Piave (VE) ITALY

declares under its sole responsibility that

all the components in its own production program for the motor-driven pumps with the trademark * SACEMI - GAMAR

Models: AP - AU - EPC - HPP- IMM - MP - MPC - MSPV - PPI - SP - SPV - SQ - TR

comply with the requirements of the European Parliament and the Council Directive 2011/65 / EC of 08 June 2011.

Sacemi-Gamar s.r.l. The CEO

Production program

The production program of **SACEMI-GAMAR S.r.I.** includes a wide range of submersible, low and medium pressure, motor-driven pumps in a large number of variants designed for industrial applications mainly for use on cooling, lubrication, washing, conditioning systems and wherever an effective circulation of water-oil emulsions and pure cutting oils is required, with flow rates up to 1200 litres / min and head up to 100 metres.

In particular, submersible pumps are designed with an eye to reliability, low operating costs, safety of use and total elimination of the risk of spillage or leakage of pumped liquids.

The motor-driven pumps are equipped with 2-pole electric motors with cage rotor, closed construction, with an aluminium alloy body with molten casting, vertical axis, cooled with external ventilation, equipped with class F windings (class H on request) and a degree of protection IP55 in accordance with IEC 60034-5.

These motors are designed to operate at a voltage of $230/400 \text{ V} \pm 10\%$ and a frequency of 50 Hz at an altitude not exceeding 1000 m a.s.l. and at a maximum ambient temperature of 40°C with a relative humidity lower than 90%. This sizing allows them to be used at $220/380 \text{ V} \pm 5\%$ and $240/415 \text{ V} \pm 5\%$ at the frequency of 50 Hz.

Should the conditions of use be more demanding (e.g. altitude greater than 1000 m and/or room temperature above 40°C), there is a decrease in the power supplied and it is advisable to consult our Technical Office.

The motor-driven pumps can be supplied with a motor both in three-phase and single-phase versions and, on demand, with special voltages and frequencies and thermal protection for heavy duty applications.

Double-screen and pre-greased rigid radial ball bearings made by leading European manufacturers are used.

The pump body can be made of steel, die-cast aluminium, cast iron, brass and plastic material.

The impeller is clamped on the extended shaft of the motor.

On request and upon verification with our Technical Office, the pumps can be equipped with IE2-IE3 efficiency class electric motors.

on request, SP-SPV pumps are available approved for the American and Canadian markets

Use, component and materials table

		Operating				p body manufac	turing features	
Type of pump	Uses	of pressure (bar)	Impurity (mm)	Type of fluid	Length of the suction pipe (mm)	Suction pipe	Feed screw	Impeller
IMM 40A	Cutting-drilling	0÷0.2	≤ 3	Oil-oily emulsions	80–120–150-180	PBT	PBT	Open Nylon
IMM 50A	Cutting-drilling-milling-conditioning	0÷0.2	≤ 3	Oil-oily emulsions	80-120-150-180	PBT	PBT	Open Nylon
IMM 63A	Turning-filtration-milling-grinding- glass processing	0÷0.6	≤ 3	Oil-oily emulsions	150-200-250-300	Aluminium	Nylon	Open Nylon
IMM 63B	Turning-filtration-milling-grinding- glass processing	0÷0.8	≤ 3	Oil-oily emulsions-alkaline solutions	150-200-250-300	Aluminium	Nylon	Open Nylon
IMM 71A	Turning-filtration-milling-grinding- glass processing	0÷1.2	≤ 3	Oil-oily emulsions-alkaline solutions	200-250-325-440	Aluminium	Aluminium	Open Brass 58
IMM 71B	Turning-filtration-milling-grinding- glass processing	0÷1.4	≤ 3	Oil-oily emulsions-alkaline solutions	200-250-325-440	Aluminium	Aluminium	Open Brass 58
IMM 80A	Turning-filtration-milling-grinding- alass processing	0÷1.4	≤ 3	Oil-oily emulsions-alkaline	200-250-300-350 -530	Aluminium	Aluminium	Open Brass 58
IMM 80B	Turning-filtration-milling-grinding-	0÷1.6	≤ 3	Oil-oily emulsions-alkaline solutions	200-250-300-350 -530	Aluminium	Aluminium	Open Brass 58
IMM 90A	glass processing Turning-filtration-milling-grinding-	0÷1.0	≤ 4	Oil-oily emulsions-paint	350-450-600-800	Steel	Cast Iron G20/	Open
IMM 90B	spray booth Turning-filtration-milling-grinding-	0÷1.4	≤ 4	wastewater Oil-oily emulsions-paint	350-450-600-800	Steel	Steel Cast Iron G20/	Cast Iron G20 Open
IMM 100B	spray booth Turning-filtration-milling-grinding-	0÷1.8	_ · ≤ 4	wastewater Oil-oily emulsions-paint	350-450-600-800	Steel	Steel Cast Iron G20/	Cast Iron G20 Open
IIVIIN TOOD	spray booth	0.1.0	- _	wastewater	330-430-000-000	oleei	Steel	Cast Iron G20
SPV 12	Turning-drilling-milling- conditioning-glass processing	0÷0.4	≤ 3	Oil-oily emulsions	90-120-170-220- 270-350	PBT	PBT	Open PBT
SPV 18	Turning-drilling-milling- conditioning-glass processing	0÷0.5	≤ 3	Oil-oily emulsions	90-120-170-220- 270-350	PBT	PBT	Open PBT
SPV 25	Cutting-drilling-milling-printing- glass processing	0÷0.5	≤ 3	Oil-oily emulsions-glycol	90-120-170-220- 270-350	PBT	PBT	Open PBT
SPV 33	Cutting-drilling-milling-printing- glass processing	0÷0.6	≤ 3	Oil-oily emulsions-glycol	90-120-170-220- 270-350	PBT	PBT	Open PBT
SPV 50	Cutting-drilling-milling-printing- glass processing	0÷1.2	≤ 3	Oil-oily emulsions-glycol	200-270-350	Nylon	Nylon	Open Nylon
SPV 75	Cutting-drilling-milling-printing- glass processing	0÷1.4	≤ 3	Oil-oily emulsions-glycol	200-270-350	Nylon	Nylon	Open Nylon
SPV 100	Cutting-drilling-milling-printing-	0÷1.4	≤ 3	Oil-oily emulsions- alkaline solutions	200-270-350	Nylon	Nylon	Open Nylon
SPV 150	glass processing Cutting-drilling-milling-printing- glass processing	$0 \div 1.5 \qquad \leq 3$		Oil-oily emulsions- alkaline solutions	200-270-350	Nylon	Nylon	Open Nylon
SP 12	Milling-turning-drilling-	0÷0.4	≤ 3	Oil-oily emulsions	90-120-170-220-	Cast Iron	PBT	Open
SP 18	Milling-turning-drilling-	0÷0.5	≤ 3	Oil-oily emulsions	270-350 90-120-170-220-	G20 Cast Iron	PBT	PBT Open
SP 25	Milling-turning-drilling-	0÷0.5	≤ 3	Oil-oily emulsions	270-350 90-120-170-220-	G20 Cast Iron	PBT	PBT Open
SP 33	grinding-filtration Milling-turning-drilling-	0÷0.6	≤ 3	,	270-350 90-120-170-220-	G20 Cast Iron	PBT	PBT Open
	grinding-filtration Milling-turning-drilling-			Oil-oily emulsions Oil-oily emulsions-	270-350 200-270-350-440-	G20 Cast Iron		PBT Open
SP 50	grinding-filtration Milling-turning-drilling-	0÷1.2	≤ 3	alkaline solutions Oil-oily emulsions-	550 200-270-350-440-	G20 Cast Iron	PBT	PBT Open
SP 75	grinding-filtration Milling-turning-drilling-	0÷1.2	≤ 3	alkaline solutions Oil-oily emulsions-	550 200-270-350-440-	G20 Cast Iron	PBT	PBT Open
SP 100	grinding-filtration	0÷1.2	≤ 3	alkaline solutions	550	G20	PBT	P'BT
SP 150	Milling-turning-drilling- grinding-filtration	0÷1.5	≤ 3	Oil-oily emulsions- alkaline solutions	200-270-350-440- 550	Cast Iron G20	PBT	Open PBT
SP 56	Turning-drilling-milling-surface treatment	0÷0.3	≤ 3	Oil-oily emulsions-alkaline solutions	_	Nylon/Cast iron	Cast Iron	Open Nylon
SP 63	Turning-drilling-milling-surface treatment	0÷0.4	≤ 3	Oil-oily emulsions-alkaline solutions	_	Nylon/Cast iron	Cast Iron	Open Nylon
SP 71A	Turning-drilling-milling-surface treatment	0÷1.2	≤ 3	Oil-oily emulsions-alkaline solutions	_	Cast Iron	Cast Iron	Open Brass 58
SP 71B	Turning-drilling-milling-surface	0÷1.3	≤ 3	Oil-oily emulsions-alkaline solutions	_	Cast Iron	Cast Iron	Open Brass 58
SP 80A	treatment Turning-drilling-milling-surface	0÷1.6	≤ 3	Oil-oily emulsions-alkaline	_	Cast Iron	Cast Iron	Open
SQ 80B	treatment Turning-drilling-milling-surface treatment	0÷1.8	≤ 3	solutions Oil-oily emulsions-alkaline solutions	_	Cast Iron	Cast Iron	Brass 58 Open Brass 58
AU 56	Recirculation-suction	0÷1.0	≤ 0.03	Oil-oily emulsions	_	Aluminium	Cast Iron	Brass 58
AU 63	Recirculation-suction	0÷1.0	≤ 0.03	Oil-oily emulsions		Aluminium	G20 Cast Iron	Brass 58
				Oil-oily emulsions-			G20	Open
TR 71A	Recirculation-transfer	0÷1.0	≤ 3	alkaline solutions Oil-oily emulsions-	_	Cast Iron	Cast Iron	Brass 58 Open
TR 71B	Recirculation-transfer	0÷1.3	≤ 3	alkaline solutions Oil-oily emulsions-	_	Cast Iron	Cast Iron	Brass 58
TR 80A	Recirculation-transfer	0÷1.6	≤ 3	alkaline solutions	_	Cast Iron	Cast Iron	Open Brass 58
TR 80B	Recirculation-transfer	0÷1.6	≤ 3	Oil-oily emulsions- alkaline solutions	-	Cast Iron	Cast Iron	Open Brass 58

Rev. 02/2017

Use, component and materials table

		Operating				p body manufac	cturing features	
Type of pump	Uses	of pressure (bar)	Impurity (mm)	Type of fluid	Length of the suction pipe (mm)	Suction pipe	Feed screw	Impeller
AP 80B	Turning-filtration-grinding-surface treatment	1.0÷2.2	≤2	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Closed Cast Iron G20
AP 90A	Turning-filtration-grinding-surface treatment	1.0÷3.0	≤2	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Closed Cast Iron G20
AP 90B	Turning-filtration-grinding-surface treatment	1.0÷3.0	≤2	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Closed Cast Iron G20
AP 100A	Turning-filtration-grinding-surface treatment	1.0÷3.6	≤2	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Closed Cast Iron G20
AP 112B	Turning-filtration-grinding-surface treatment	1.0÷3.4	≤2	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Closed Cast Iron G20
AP 90A*	Turning-filtration-grinding-surface treatment	1.0÷3.0	≤ 3	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Open* Cast Iron G20
AP 90B*	Turning-filtration-grinding-surface treatment	1.0÷3.0	≤ 3	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Open* Cast Iron G20
AP 100A*	Turning-filtration-grinding-surface treatment	1.0÷3.6	≤ 3	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Open* Cast Iron G20
AP 112B*	Turning-filtration-grinding-surface treatment	1.0÷3.4	≤ 3	Oil-oily emulsions-alkaline solutions	320-450-610-860	Cast Iron G20 Steel	Cast Iron G20	Open* Cast Iron G20
* Option								
MP 63C	Turning-filtration-grinding 0÷1.6		≤ 3	Oil-oily emulsions	180-230-280-330	Aluminium	Aluminium	Open Brass 58
MP 71A	Turning-filtration-grinding	0÷1.9	≤ 3	Oil-oily emulsions	180-230-280-330	Aluminium	Aluminium	Open Brass 58
MP 71B	Turning-filtration-grinding	0÷2.3	≤ 3	Oil-oily emulsions	210-260-310-360	Aluminium	Aluminium	Open Brass 58
MP 80C	Turning-filtration-grinding	0÷3.1	≤ 3	Oil-oily emulsions	230-280-355-470	Aluminium	Aluminium	Open Brass 58
MP 90B	Turning-filtration-grinding	0÷4.9	≤ 3	Oil-oily emulsions	265-315-390-505	Aluminium	Aluminium	Open Brass 58
MP 100B	Turning-filtration-grinding	0÷6.0	≤ 3	Oil-oily emulsions	265-315-365-415-595	Aluminium	Aluminium	Open Cast Iron G20
MPC 80B	Turning-filtration-grinding	0÷2.5 ≤2		Oil-oily emulsions	210-260-335-450	Aluminium	Aluminium	Closed Brass 58
MPC 80C	Turning-filtration-grinding	ng 0÷4.5 ≤2		Oil-oily emulsions	240-290-365-480	Aluminium	Aluminium	Closed Brass 58
MPC 90B	Turning-filtration-grinding	0÷6.2	≤2	Oil-oily emulsions	260-310-385-500	Aluminium	Aluminium	Closed Brass 58
MPC 100B	Turning-filtration-grinding	0÷9.8	≤2	Oil-oily emulsions	280-330-380-430-610	Aluminium	Aluminium	Closed Brass 58
MSPV 71	Milling-turning-drilling- grinding-filtration	0÷1.8	≤ 3	Oil-oily emulsions-glycol	230-300-380	Nylon	PBT	Open PBT
MSPV 80	Milling-turning-drilling- grinding-filtration	0÷4.0	≤ 3	Oil-oily emulsions-glycol	260-330-410	Nylon	PBT	Open PBT
EPC 63C	Deep-hole-drilling-cooling	0÷3.0	≤ 0.03	Oil-oily emulsions-glycol	100-130-180-230- 280-360	Cast Iron G20	Cast Iron G20	Peripheral device Brass 58
EPC 71B	Deep-hole-drilling-cooling	0÷4.0	≤ 0.03	Oil-oily emulsions-glycol	100-130-180-230- 280-360	Cast Iron G20	Cast Iron G20	Peripheral device Brass 58
EPC 80B	Deep-hole-drilling-cooling	0÷6.0	≤ 0.03	Oil-oily emulsions-glycol	100-130-180-230- 280-360	Cast Iron G20	Cast Iron G20	Peripheral device Brass 58
EPC 90A	Deep-hole-drilling-cooling	0÷9.0	≤ 0.03	Oil-oily emulsions-glycol	115-145-195-245- 295-375	Cast Iron G20	Cast Iron G20	Peripheral device Brass 58
EPC 90B	Deep-hole-drilling-cooling	0÷13	≤ 0.03	Oil-oily emulsions-glycol	140-170-220-270- 320-400	Cast Iron G20	Cast Iron G20	Peripheral device Brass 58
PPI 63C	Thermoregulation	0÷3.0	≤ 0.03	Diathermic oil	195	Brass 58	Brass 58	Peripheral device Brass 58
PPI 71B	Thermoregulation	0÷4.0	≤ 0.03	Diathermic oil	200	Brass 58	Brass 58	Peripheral device Brass 58
HPP 80	Machine tool-filtration- washing-cooling	1÷5.0	_	Clean non-explosive fluids	_	lnox	_	Closed Stainless steel
HPP 90	Machine tool-filtration- washing-cooling	2÷10	-	Clean non-explosive fluids	_	lnox	_	Closed Stainless steel
HPP 100	Machine tool-filtration- washing-cooling	5÷12	-	Clean non-explosive fluids	-	lnox	_	Closed Stainless steel
HPP 112	Machine tool-filtration- washing-cooling	6÷16	-	Clean non-explosive fluids	-	lnox	-	Closed Stainless steel
	9	-		•	-		-	

Hydraulic performance tables - standard running

Head in metres (H) →	0	0.5	1	1.5	2	3	4	5	6	7	8	9	10	12	14	16	18	20
Type of pump								Flow ro	ate in lit	res/mir	n (Q) ↓							
IMM 40A	13	12	10	8	5													
IMM 50A	22	19	16	13	9													
IMM 63A	85	81	77	73	69	59	47	32	8									
IMM 63B	100	97	93	89	85	77	68	58	46	32	15							
IMM 71A	238	234	229	224	220	206	197	185	172	157	143	128	109	67	4			
IMM 71B	240	235	230	226	220	210	200	190	1 <i>77</i>	166	152	140	124	67	55	6		
A08 MMI	293	288	279	276	267	256	242	229	218	121	196	179	155	116	71	14		
IMM 80B	388	383	378	372	366	355	344	332	319	303	289	275	260	224	185	140	80	
IMM 90A	928	906	870	847	816	754	709	617	551	455	341	259	119					
IMM 90B	1284	1263	1242	1220	1186	1147	1083	1039	977	914	833	766	682	484	172			
IMM 100B	1430	1406	1382	1360	1335	1280	1230	1170	1115	1050	987	920	847	710	512	304	50	

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16
Type of pump					F	ow rate	e in litre	es/min	(Q) ↓					
SPV 12	56	48	38	27	13									
SPV 18	65	57	48	38	26	12								
SPV 25	72	65	57	49	37	23								
SPV 33	75	68	61	52	41	27	7							
SPV 50	263	250	238	226	213	198	182	164	147	127	103	43		
SPV 75	275	264	252	240	226	213	198	182	165	146	125	<i>7</i> 5		
SPV 100	280	269	258	246	233	220	206	192	176	159	139	89	15	
SPV 150	300	290	279	267	253	238	225	210	195	179	160	112	36	
SP 12	65	57	47	35	21									
SP 18	75	67	58	48	35	18								
SP 25	85	77	68	58	46	30	5							
SP 33	87	80	<i>7</i> 1	62	50	36	11							
SP 50	288	271	251	234	215	194	172	150	125	100	70			
SP 75	320	304	289	272	254	236	216	195	172	147	120	55		
SP 100	340	326	310	292	275	255	236	216	195	1 <i>7</i> 1	144	79		
SP 150	400	380	358	337	317	296	273	246	219	188	148	62		

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16
Type of pump					F	low rat	te in liti	es/mir	ı (Q) \downarrow					
SQ 56	60	48	35	27	11									
SQ 63	80	69	54	41	27									
SQ 71A	260	251	241	229	218	207	185	158	134	99	52			
SQ 71B	300	289	277	264	251	235	213	190	167	141	98			
SQ 80A	340	326	310	293	274	255	238	218	195	171	130	72		
SQ 80B	380	368	354	340	326	307	293	274	257	222	208	143	62	

Head in metres (H) $ ightarrow$	0	1	2	3	4	5	6	7	8	9	10	12	
Type of pump		Flow rate in litres/min (Q) ↓											
AU 56	7	6	5	4	3	2	1						
AU 63	11	10	9	8	7	6	5	4	3	2	1		

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16
Type of pump					Flo	ow rate	in litre	es/min	(Q) ↓					
TR 71A	190	182	172	162	152	140	127	113	96	78	55			
TR 71B	200	192	183	174	164	153	141	128	115	100	82	41		
TR 80A	230	218	207	195	183	170	156	142	127	111	94	55		
TR 80B	250	240	230	220	208	196	183	169	155	140	124	88	45	

Hydraulic performance tables - standard running

Head in metres (H) →	Type of impeller	0	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Type of pump	Typ imp							Flow r	ate in l	itres/m	in (Q) -	\downarrow						
AP 80B		240	222	207	191	1 <i>7</i> 3	152	129	106	65								
AP 90A	e e	382	367	350	331	311	289	266	241	211	173	99	14					
AP 90B	Impeller closed	525	468	449	423	400	374	346	315	276	237	192	119					
AP 100A		633	577	561	545	528	511	492	471	450	422	394	360	323	286	234	138	
AP 112B		914	786	<i>77</i> 2	<i>7</i> 52	<i>7</i> 31	706	677	629	580	506	432	346	239	73			
AP 90A	_	461	374	351	326	300	270	235	198	154	85							
AP 90B	Open impeller	500	436	403	369	338	309	273	233	178	68							
AP 100A	Qm	565	495	475	454	431	406	375	342	306	270	224	156					
AP 112B	·=	984	893	865	814	765	712	655	596	528	461	372	257	48				

Head in metres (H) →	0	4	8	12	16	20	24	28	32	36	40	45	50	55
Type of pump					Flo	ow rate	in litre	s/min	(Q) ↓					
MP 63C	93	79	63	43	20									
MP 71A	103	88	70	50	26									
MP 71B	115	102	88	<i>7</i> 3	55	34	8							
MP 80C	269	244	215	184	148	106	68	22						
MP 90B	307	293	276	257	236	213	18 <i>7</i>	159	130	97	63	17		
MP 100B	360	349	333	316	297	280	256	233	207	178	141	94	37	

Head in metres (H) $ ightarrow$	0	5	10	15	20	25	30	35	40	45	50	60	70	80	90
Type of pump						Flow r	ate in	itres/m	nin (Q)	\downarrow					
MPC 80B	131	119	109	88	58	5									
MPC 80C	151	142	134	124	118	102	93	71	40						
MPC 90B	150	152	149	145	140	135	126	118	107	94	78	40			
MPC 100B	160	156	154	152	149	146	142	135	128	121	113	93	60	27	

Head _in metres (H) →	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28
Type of pump					Fl	ow rate	in litre	es/mir	n (Q) ¬	\					
MSPV 71	185	172	161	147	129	112	88	65	45	22					
MSPV 80	158	150	143	134	125	116	106	95	83	71	59	45	32	16	

Head in metres (H) →	0	5	10	15	20	30	40	50	60	70	80	90	100	110	120	130
Type of pump		Flow rate in litres/min (Q) ↓														
EPC 63C	47	37	31	23	18	6		(
EPC 71B	62	56	50	44	38	27	17	6								
EPC 80B	74	68	63	57	53	43	34	25	17	9						
EPC 90A	78	72	67	62	57	47	38	30	23	15	8					
EPC 90B	80	76	73	70	67	60	54	48	41	35	29	23	17	11	5	

Head in metres (H) \rightarrow	0	5	10	15	20	25	30	35	40	45	50
Type of pump				Flow	rate ir	litres	/min	(Q) ↓			
PPI 63C	48	41	33	26	19	13	7	1			
PPI 71B	61	55	48	42	36	29	23	17	11	5	

HPP pumps hydraulic performance tables

Head _in metres (H) →	0	10	12	14	16	18	20	25	30	35	40	45	50	55	60
Type of pump						Flow	rate in	litres/n	nin (Q)	\downarrow					
HPP 80/2		125	109	98	73	42									
HPP 80/4		147	141	138	133	127	123	106	82	46					
HPP 80/6		147	144	141	138	136	133	124	115	104	89	75	49	28	

Head in metres (H) →	0	10	20	30	40	50	60	70	80	90	100	110
Type of pump					Flow ro	ite in lit	res/mi	n (Q)	\downarrow			
HPP 90/8			137	123	108	90	66	35				
HPP 90/10			145	135	125	111	98	<i>7</i> 8	54	15		
HPP 90/12			147	140	130	116	112	95	79	57	32	

Head _in metres (H) →	0	10	20	30	40	50	60	70	80	90	100	120	140	160	180
Type of pump						F	low rat	e in litr	es/min	(Q) \downarrow					
HPP100/14				147	141	134	126	118	109	98	84	38			
HPP112/16				149	145	140	134	126	120	110	103	80	30		
HPP112/19				151	148	142	136	132	125	119	113	99	<i>7</i> 8	43	

Datasheets motor-driven pumps

Type IMM 40-50

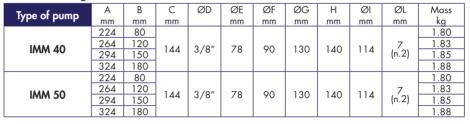
Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in PBT allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

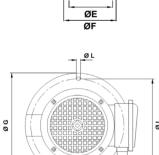
The temperature of the liquid must not exceed 70°C.

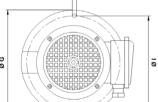
They are commonly used on:

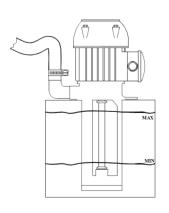

- machine tools (milling and turning machines-drills)
- glass processing machinery (TRI version)
- air-conditioning systems

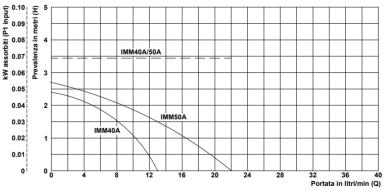
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 2-3 cm from the bottom. It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

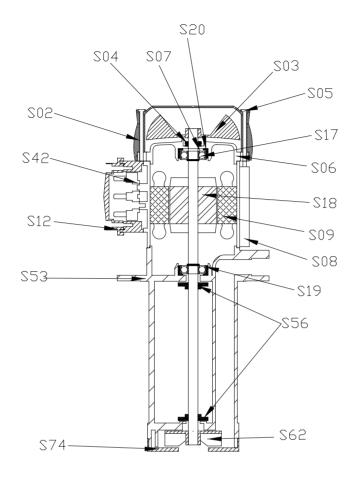
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.


For different uses, please consult our Technical Office.






	k'	W	V 230/	400 - Hz	50	0 0	
Type of pump	Input	Nom.	ln	n ,	cos φ	Q - maxQ litres/min	maxH - H metres
	(P1)	(P2)	Amp.	min ⁻¹		illes/ illin	meires
IMM 40	0.07	0.03	0.35/0.20	2730	0.58	5 - 13	2.0 - 0
IMM 50	0.09	0.04	0.35/0.20	2620	0.60	3 - 22	2.5 - 0



Hydraulic performance curves (open impeller)

		1170	aone	Pon	omma	1100 1	abic	OPOI	, ,,,,,b,		
Head											
in metres (H)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
\rightarrow											
Type of pump				Flow	v rate i	n litres	/min	(Q) ↓			
IMM 40	13	12	10	8	5						
IMM 50	22	19	16	13	9	3					

Type IMM 40-50

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	3 3
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
\$18.	Axis + rotor
S19.	Lower bearing
S20.	Bearing casing
S42.	Terminal board
S53.	Pump body
S56.	TRI washer
S62.	Impeller
S74.	Bottom

IMM 40
Materials
Nylon
Nylon
NBR
Steel
Nylon
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
PBT
PBT
Nylon
PBT

*On demand Ax.AISI316

IMM 50
Materials
Nylon
Nylon
NBR
Steel
Nylon
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
PBT
PBT
Nylon
PBT

*On demand Ax.AISI316

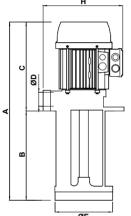
Type IMM 63

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in nylon, pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 70°C.

They are commonly used on:

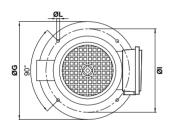

- machine tools (milling and turning machines-drills)
 glass processing machinery (TRI version)
- surface treatment plants
- filtration systems
- air-conditioning systems

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

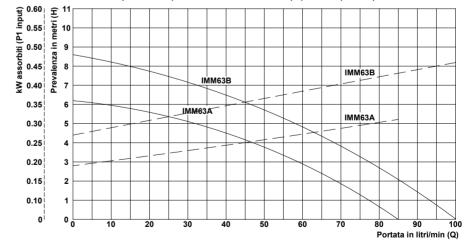
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure)

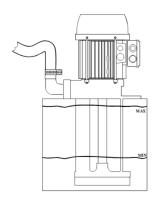
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump

For different uses, please consult our Technical Office.

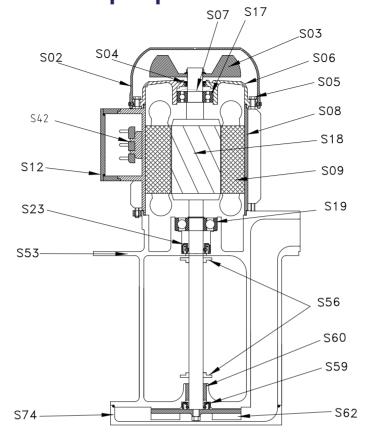

Size and weights table

Time of nume	Α	В	С	ØD	ØE	ØG	Н	ØI	ØL	Mass
Type of pump	mm	mm	mm		mm	mm	mm	mm	mm	kg
	355	150 T								5.0
IMM 63A	405	200 T	205	3/4"	128	180	190	150	9	5.1
IMM OJA	455	250 T						150	(n.4)	5.3
	505	300 T								5.4
	355	150 T								5.5
IAAAA 42D	405	200 T	005	3/4"	128	180	190	150	9	5.7
IMM 63B	455	250 T	205	3/4	120	100	190	130	(n.4)	5.9
	505	300 T								6.0


On demand: T= TRI mode


Rating plate data

• .							
	k'	W	V 230/	′400 - Hz	00		
Type of pump	Input	Nom.	ln	n .	cos φ	Q - maxQ	maxH - H
,, , , , , , , , , , , , , , , , , , ,	(P1)	(P2)	Amp.	min-l		litres/min	metres
IMM 63A	0.38	0.25	1.30/0.75	2720	0.72	8 - 85	6 - 0
IMM 63B	0.52	0.37	1.65/0.95	2760	0.79	15-100	8 - 0


Hydraulic performance curves (open impeller)

				1				- 1 · 1		I	/
Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10
Type of pump		Flow rate in litres/min (Q) ↓									
IMM 63A	85	77	69	59	47	32	8				
IMM 63B	100	93	85	77	68	58	46	32	15		

Type IMM 63

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + rotor
S19.	Lower bearing
S23.	Motor seal ring
S42.	Terminal board
S53.	Pump body
S56.	TRI washer
S59.	Feed screw seal ring
S60.	
S62.	
S74.	Feed screw

IMM 63A
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Nylon
Nylon

*On demand Sheet metal **On demand.Ax.AISI 416

Materials Nylon* Nylon NBR Steel Aluminium Steel Aluminium Nylon Steel** NBR Aluminium PBT NBR Bronze Nylon Nylon

IMM 63B

*On demand Sheet metal

**On demand.Ax.AISI 416

Type IMM 71

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller in brass, feed screw and pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

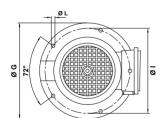
- machine tools (milling and turning machines)
- glass processing machinery (TRI version)
- surface treatment plants
- filtration systems

- air-conditioning systems
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from

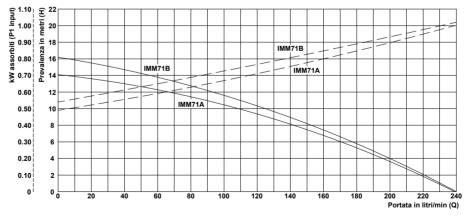
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

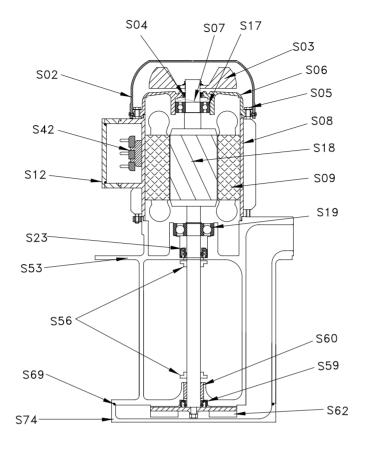

Size and weights table

Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	440	200 T									9.3
IMM 71A	490	250 T	240	1"	190		230	225	204	9	9.7
IMM / IA	565	325 T	240		190	-			204	(n.5)	10.0
	680	440								, ,	11.3
	440	200 T									10.2
18484 71D	490	250 T	240	1 "	100		220	225	20.4	9	10.5
IMM 71B	565	325 T	240		190	-	230	230 225	204	(n.5)	10.9
	680	440									12.2


On demand: T= TRI mode

Rating plate data

	k۱	W	V 230/	′400 - Hz	00		
Type of pump	Input	Nom.	ln	n,	cos φ	Q - maxQ	maxH - H
<i>''</i> ' '	(P1)	(P2)	Amp.	min ^{- l}	·	litres/min	metres
IMM 71A	1.00	0.75	3.24/1.87	2770	0.77	4 - 238	14 - 0
IMM 71B	1.20	0.90	3.83/2.21	2760	0.78	6 - 240	16 - 0



Hydraulic performance curves (open impeller)

Head in metres (H)	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
\rightarrow															
Type of pump	Flow rate in litres/min (Q) ↓														
IMM 71A	238	229	220	206	197	185	172	157	143	128	109	67	4		
IMM 71B	240	230	220	210	200	190	177	166	152	140	124	67	55	6	

Type IMM 71

Spare parts nomenclature

	_
	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S 05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
	Axis + rotor
S19.	Lower bearing
S23 .	Motor seal ring
S42 .	Terminal board
S53.	Pump body
\$56.	TRI washer
S59.	Feed screw seal ring
S60.	
S62.	
S74.	Feed screw

*On demand Sheet metal **On demand. Ax. AISI 416

Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium

Nylon

Steel**

NBR

Aluminium
PBT
NBR
Bronze
Brass 58
Aluminium

IMM 71A IMM 71B
Materials Materials

Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
=
Nylon
-
Steel**
-
NBR
-
Aluminium
PBT
NBR
Bronze
Brass 58
Aluminium

*On demand Sheet metal **On demand. Ax. AISI 416

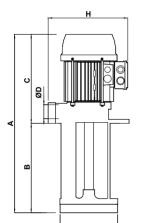
Type IMM 80

<u>Uses</u>

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller in brass, feed screw and pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 90°C.

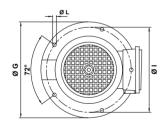

- They are commonly used on:
 machine tools (milling and turning machines)
- glass processing machinery (TRI version)
- surface treatment plants
- filtration systems
- air-conditioning systems

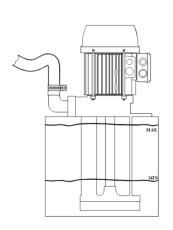
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

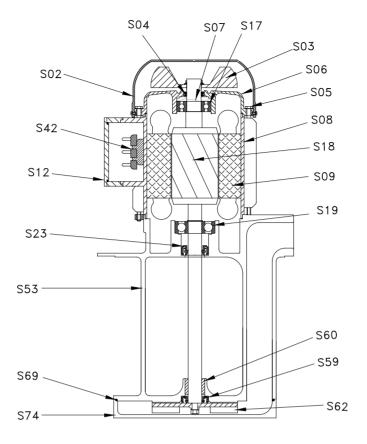

Size and weights table


Type of nume	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pump	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	485	200 T									14.5
	535	250 T								9	15.0
IMM 80A	585	300 T	285	1 1/4"	202	220	250	260	235		15.5
	635	350 T								(n.5)	16.0
	815	530									18.0
	485	200 T									15.4
	535	250 T								9	15.9
IMM 80B	585	300 T	285	1 1/4"	202	220	250	260	235	· '	16.4
	635	350 T								(n.5)	16.9
	815	530									19.0

On demand: T= TRI mode

Rating plate data

	k'	W	V 230	/400 - H	z 50	0 0	
Type of pump	Input (P1)	Nom. (P2)	In Amp.	n min-1	cos φ	Q - maxQ litres/min	maxH - H metres
IMM 80A	1.41	1.1	4.3/2.5	2825	0.81	14 - 293	16 - 0
IMM 80B	1.86	1.5	5.7/3.3	2845	0.83	80 - 388	18 - 0



Hydraulic performance curves (open impeller) (Massorbiti (P1 input) 1.80 1.40 1.40 1.40 1.20 Î 20 netri .⊑ ІММ80В IMM80B IMM804 12 1.00 10 0.80 0.60 0.40 0.20 2 0 0 6 200 240 Portata in litri/min (Q)

			<i>,</i> a. a	0o				10.0	opo.	۲۲	00. 1					
Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
Type of pump		Flow rate in litres/min (Q) ↓														
IMM 80A	293	279	267	256	242	229	218	212	196	179	155	116	71	14		
IMM 80B	388	378	366	355	344	332	319	303	289	275	260	224	185	140	80	

Type IMM 80

Spare parts nomenclature

	Component						
S02.	Fan cover						
S03.	Fan						
S04.	V-ring						
S05.	Stay rod						
S06.	Upper shield						
S07.	S07. Balancing ring						
S08.	Housing						
S09.	Wound stator						
S12.	Terminal board cover						
S17.	Upper bearing						
S18.	Axis + rotor						
S19.	Lower bearing						
S23.	Motor seal ring						
S42.	Terminal board						
S53.							
S59.	Feed screw seal ring						
S60.							
S62.	Impeller						
S69.	O-ring						
S74.	Feed screw						

IMM 80A
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Aluminium
NBR
Bronze
Brass 58
NBR
Aluminium

^{*}On demand Sheet metal **On demand Ax.AISI 416

11/11/11 000
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Aluminium
NBR
Bronze
Brass 58
NBR
Aluminium

IMM 80B

^{*}On demand Sheet metal **On demand Ax.AISI 416

Type IMM 90-100

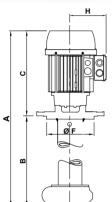
Uses

They are suitable for transferring liquids containing impurities up to 4 mm in size.

Their hydraulic components: impeller and feed screw in cast iron, pump body in steel allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 90°C.

They are commonly used on:


- machine tools
- glass processing machinery
- surface treatment plants
- filtration systems
- spray booths

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 7-8 cm from the bottom.

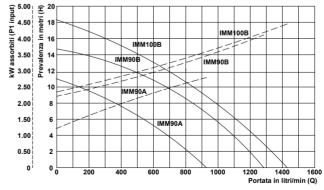
It is important to make sure that the maximum liquid level in the tank is always 5-6 cm lower than the support flange (see figure).

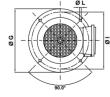
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

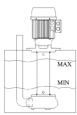
Size and weights table

Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	695	350		2″							47.5
1444 004	795	450	2.45		235	240	300	130	270	13 (n.4)	48.1
IMM 90A	945	600	345		233	240					48.8
	1145	800								' '	50.0
	695	350									49.0
IAAAA OOD	795	450	245	2"	225	240	200	120	070	13	49.6
IMM 90B	945	600	345	2"	235	240	300	130	270	(n.4)	50.0
	1145	800									51.5
	730	350									53.0
14444 100D	830	450	200	0.1/ //	225	240	200	1.45	070	13	53.6
IMM 100B	980	600	380	2 ½"	235	240	300	145	270	(n.4)	54.3
	1180	800									55.5

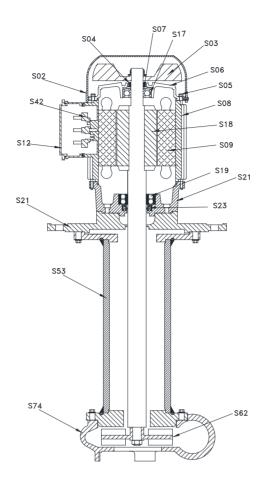



Rating plate data

O 1							
	k'	W	V 230/400 - Hz 50			Q - maxQ	maxH - H
Type of pump	Input	Nom.	ln	n,	cos φ		
,	(P1)	(P2)	Amp.	min ⁻¹	·	litres/min	metres
IMM 90A	2.70	2.2	8.1/4.7	2870	0.83	119 - 928	10 - 0
IMM 90B	3.58	3	10.6/6.1	2855	0.84	172 - 1284	14 - 0
IMM 100R	185	1	1/0/8/	2875	0.81	50 _ 1/30	18 - ∩



Hydraulic performance curves (open impeller)



Head in metres (H) →	0	2	4	6	8	10	12	14	16	18	20
Type of pump		Flow rate in litres/min (Q) ↓									
IMM 90A	928	816	709	551	341	119					
IMM 90B	1284	1186	1083	977	833	682	484	172			
IMM 100B	1430	1335	1230	1115	987	847	710	512	304	50	

Type IMM 90-100

Spare parts nomenclature

		IMM 90A	IMM 90B	IMM 100B
	Component	Materials	Materials	Materials
S02.	Fan cover	Nylon*	Nylon*	Nylon*
S03.	Fan	Nylon	Nylon	Nylon
S04.	V-ring	NBR	NBR	NBR
S05.	Stay rod	Steel	Steel	Steel
S06.	Upper shield	Aluminium	Aluminium	Aluminium
S07.	Balancing ring	Steel	Steel	Steel
S08.	Housing	Aluminium	Aluminium	Aluminium
S09.	Wound stator	-	-	-
S12.	Terminal board cover	Nylon	Nylon	Nylon
S17.	Upper bearing	-	-	-
S18.	Axis + rotor	Steel	Steel	Steel
S19.		-	-	-
S21.	Special shield	Cast Iron G20	Cast Iron G20	Cast Iron G20
S21.	Support flange	Cast Iron G20	Cast Iron G20	Cast Iron G20
S23.	Motor seal ring	NBR	NBR	NBR
S42.	Terminal board	-	-	-
S53.	Pump body	Cast Iron G20/Steel	Cast Iron G20/Steel	Cast Iron G20/Steel
S62.	Impeller	Cast Iron G20	Cast Iron G20	Cast Iron G20
S74.	Feed screw	Cast Iron G20	Cast Iron G20	Cast Iron G20

*On demand Sheet metal

*On demand Sheet metal

*On demand Sheet metal

Type SPV 12-18

Uses

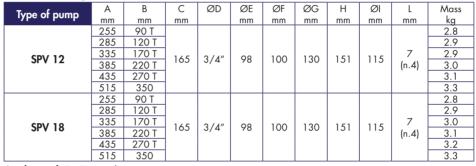
They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in PBT allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

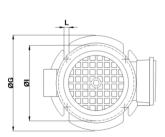
- machine tools (milling and turning machines-drills)
 glass processing machinery (TRI version)
- printing machines


They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

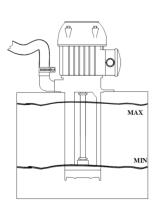
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

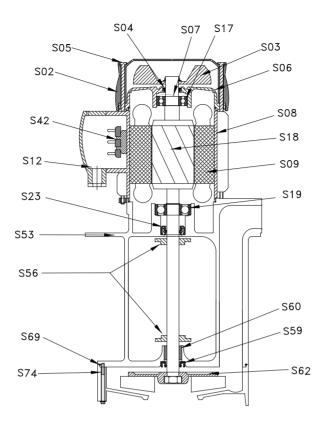

Size and weights table

On demand: T= TRI mode


Rating plate data

		k'	kW V 230/400 - Hz 50				00	maxH - H
T	ype of pump	Input (P1)	Nom. (P2)	In Amp.	n min-1	cos φ	Q - maxQ litres/min	maxn - n metres
	SPV 12	0.15	0.07	0.52/0.30	2770	0.71	6 - 56	4.5 - 0
	SPV 18	0.17	0.09	0.55/0.32	2730	0.72	2 - 65	5.5 - 0

ØF


Ω

Hydraulic performance curves (open impeller) 0.20 **£** 10 netri 0.18 .⊑ 0.16 7 0.14 SPV18 Prev. 0.12 0.10 0.08 SPV18 SPV12 0.06 0.04 0.02 Portata in litri/min (Q)

Head in metres (H) →	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Type of pump		Flow rate in litres/min (Q) ↓											
SPV 12	56	52	48	43	38	33	27	21	13	6			
SPV 18	65	61	57	53	48	43	38	32	26	19	12	2	

Type SPV 12-18

Spare parts nomenclature

15	nomencialui	е	
	SP	٧	12

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	
S07.	Balancing ring
S08.	0
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
\$18.	Axis + rotor
S19.	Lower bearing
S23.	Motor seal ring
S42.	Terminal board
S53.	Pump body
S56.	TRI washer
S59.	Feed screw seal ring
S60.	
S62.	Impeller
S69.	O-ring
S74.	Feed screw

Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
PBT
PBT
NBR**
Bronze**
PBT
NBR
PBT

*On demand. Ax. AISI 316

*On demand. Ax. AISI 316 **Available only on suction pipe 220-270-350 **Available only on suction pipe 220-270-350

SPV 18

Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
PBT
PBT
NBR**
Bronze**
PBT
NBR
PBT

Type SPV 25-33

Uses

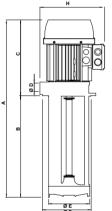
They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in PBT allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

- They are commonly used on:

 machine tools (milling and turning machines-drills)

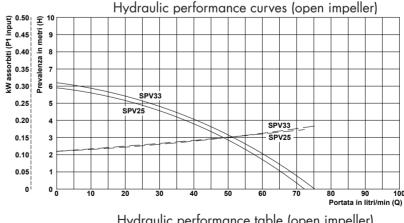

 glass processing machinery (TRI version)
- printing machines
- air-conditioning systems
- filtration systems

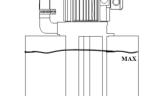
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure)

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

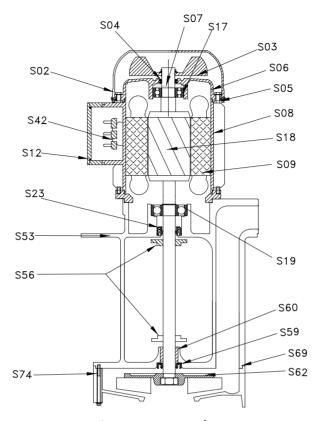

Size and weights table


Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	L	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	300	90 T									4.3
SPV 25	330	120 T			98	100	130	170	115	7 (n.4)	4.4
	380	170 T	210	3/4"							4.5
	430	220 T									4.6
	480	270 T									4.7
	560	350									4.8
	300	90 T		0.74"	00		100	170	115	7 (n.4)	4.8
	330	120 T	1								4.9
CDV/ 22	380	170 T	210			100					5.0
SPV 33	430	220 T	210	3/4"	98	100	130		115		5.1
	480	270 T									5.2
	560	350									5.3

On demand: T= TRI mode

Rating plate data

	k'	W	V 230/	′400 - Hz	00		
Type of pump	Type of pump Input Nom.		ln	n 1	cos φ	Q - maxQ	maxH - H
<i>'</i>	(P1)	(P2)	Amp.	min ⁻¹		litres/min	metres
SPV 25	0.26	0.18	0.85/0.49	2810	0.76	12 - 72	5.5 - 0
SPV 33	0.36	0.25	1.13/0.65	2800	0.78	7 - 75	6.0 - 0



MIN

Head in metres (H) →	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
Type of pump		Flow rate in litres/min (Q) ↓													
SPV 25	72	68	65	62	57	53	49	43	37	31	23	12			
SPV 33	75	72	68	65	61	56	52	46	41	35	27	18	7		

Type SPV 25-33

Spare parts nomenclature

	Component
S02.	
S03.	
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
\$12.	Terminal board cover
	Upper bearing
\$18.	Axis + rotor
S19.	Lower bearing
	Motor seal ring
S42.	Terminal board
S53.	Pump body
\$56.	TRI washer
S59.	Feed screw seal ring
S60.	3
S62.	Impeller
S69.	O-ring
S74.	Feed screw

Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
PBT
PBT
NBR***
Bronze***
PBT
NBR
PBT

SPV 25

*On demand Sheet metal **On demand. Ax. AISI 416 ***Available only on suction pipe 350

SPV 33
SPV 33 Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
=
Steel**
-
NBR
-
PBT
PBT
NBR***
Bronze***
PBT
NBR
PBT

*On demand Sheet metal
**On demand. Ax. AISI 416
***Available only on suction pipe 350

Type SPV 50-75

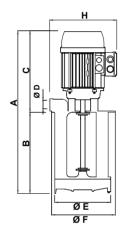
<u>Uses</u>

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in Nylon allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

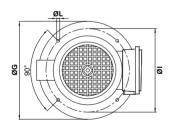

- machine tools (milling and turning machines)
- glass processing machinery (TRI version on suction pipes 200 and 270)
- printing machines
- air-conditioning systems
- spray booths

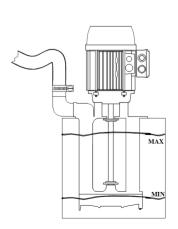
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

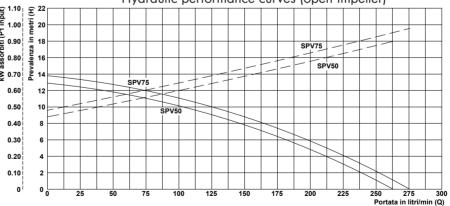
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

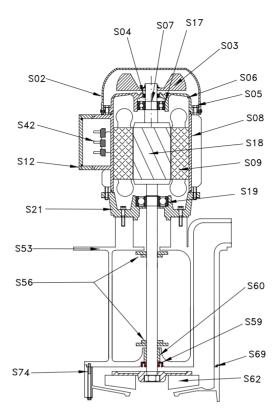

Size and weights table


	Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	L	Mass
1	type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	SPV 50	460	200 T		1 1/4"	138	140	180	215	160	7	7.7
		530	270 T	260							(n.4)	8.3
		610	350								(n.4)	8.9
		460	200 T			138			215		7	8.7
	SPV 75	530	270 T	260	1 1/4"		140	180		160	(n.4)	9.2
		610	350								(n.4)	9.9

On demand: T= TRI mode


Rating plate data

		k'	W	V 230/	'400 - Hz	00			
	Type of pump	Input Nom.		ln	ln n		Q - maxQ	maxH - H	
	<i>'</i> '' ' '	(P1)	(P2)	Amp.	Amp. min-1		litres/min	metres	
Γ	SPV 50	1.00	0.75	3.24/1.87	2770	0.77	43 - 263	12 - 0	
	SPV 75	1.20	0.90	3.83/2.21	2760	0.78	75 - 275	12 - 0	



Hydraulic performance curves (open impeller)

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump		Flow rate in litres/min (Q) ↓													
SPV 50	263	250	238	226	213	198	182	164	147	127	103	43			
SPV 75	275	264	252	240	226	213	198	182	165	146	125	75			

Type SPV 50-75

Spare parts nomenclatur	е
-------------------------	---

	-
	Component
S02 .	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
\$12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + rotor
S19.	Lower bearing
S21.	Flange
S23 .	Motor seal ring
S42 .	Terminal board
S53.	Pump body
\$56.	TRI washer
S60.	Bushing
S62.	Impeller
S69.	O-ring
S74.	Feed screw

7	*On demand Sheet metal
**On demand o	covered in PBT on suction
	pipe 200-270-350

Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
(AX.AISI 416)**
-
Aluminium
NBR
-
Nylon
PBT
Engineering plastic
Nylon
NBR
Nylon

SPV 50

Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
(AX.AISI 416)**
-
Aluminium
NBR
-
Nylon
PBT
Engineering plastic
Nylon
NBR
Nylon

SPV 75

*On demand Sheet metal **On demand covered in PBT on suction pipe 200-270-350

Type SPV 100-150

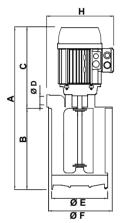
Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in Nylon allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

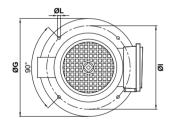

- machine tools (milling and turning machines)
 glass processing machinery (TRI version when possible)
- printing machines

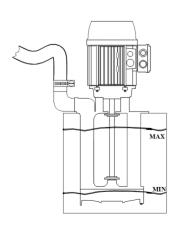
- air-conditioning systems
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

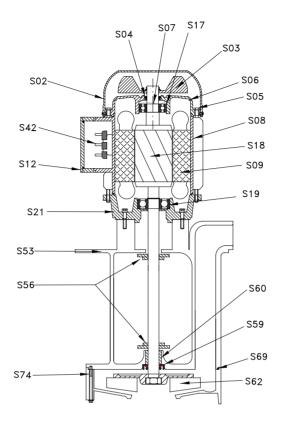

Size and weights table


	Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
		mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
		500	200 T								0	10.5
	SPV 100	570	270 T	300	1 ¼"	138	140	180	230	160	(n.4)	11.0
	650	350								(11.4)	11.7	
		500	200 T								0	11.8
	SPV 150	570	270 T	300	1 ¼″	138	140	180	230	160	/	12.3
		650	350								(n.4)	13.0

On demand: T= TRI mode

Rating plate data

0 1								
	k'	W	V 230)/400 - H	z 50	00		
Type of pump	Input (P1)	Nom. (P2)	In Amp.	n min-1	cos φ	Q - maxQ litres/min	maxH - H metres	
SPV 100	1.01	0.75	3.1/1.8	2800	0.80	15 - 280	14 - 0	
SPV 150	1.41	1.1	43/25	2825	0.81	36 - 300	14 - 0	



kW assorbiti (P1 input) 1 1.80 9.1 - 00.7 Hydraulic performance curves (open impeller) Î 20 metri .⊑ 16 12 SPV150 SPV100 1.00 10 SPV100 0.80 0.60 0.40 0.20 120 200 Portata in litri/min (Q)

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump		Flow rate in litres/min (Q) ↓													
SPV 100	280	269	258	246	233	220	206	192	176	159	139	89	15		
SPV 150	300	290	279	267	253	238	225	210	195	179	160	112	36		

Type SPV 100-150

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
	Stay rod
S06.	Upper shield
S07.	Balancing ring
	Housing
	Wound stator
S12.	Terminal board cover
S17.	
	Axis + rotor
S19.	Lower bearing
S21.	Flange
S23.	Motor seal ring
	Terminal board
	Pump body
S56.	TRI washer
S60.	Bushing
S62.	
S69.	O-ring
S74 .	Feed screw

SPV 100
Materials
Nylon*
Ńylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
(AX.AISI 416)
(AX.AISI 416)
- Aluminium
NBR
INDIN
Nylon
PBT
Bronze
Nylon
NBR
Nylon

^{*}On demand Sheet metal

SPV 150 Materials Nylon* Ńylon NBR Steel Aluminium Steel Aluminium Nylon (AX.AISI 416) Aluminium **NBR** Nylon РВТ Bronze Nylon ŃBR Nylon

^{*}On demand Sheet metal

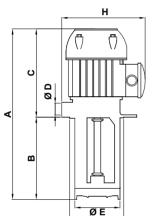
Type SP 12-18

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in PBT, pump body in cast iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

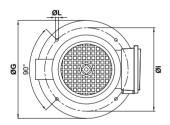

- machine tools (milling and turning machines)
 glass processing machinery (TRI version)
- surface treatment plants
- filtration systems

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

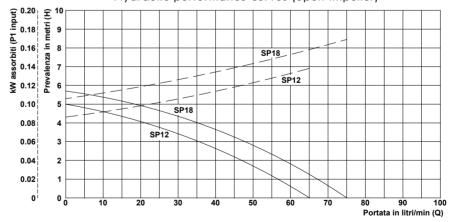
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

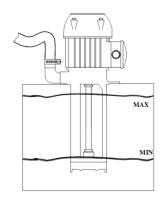
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

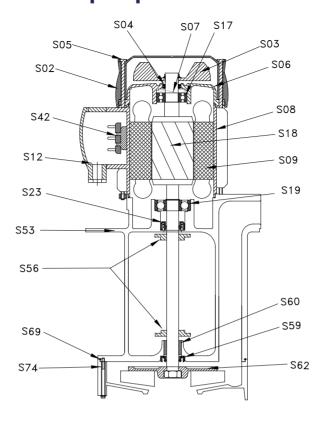

Size and weights table

Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
SP 12	265	90 T			98	100	130				5.0
	285	120 T	165						115	7 (n.4)	5.3
	335	170 T		3/4"				151			5.5
	385	220 T									5.7
	435	270 T									6.0
	515	350									6.5
	265	90 T					100	151		7	5.1
	285	120 T									5.4
CD 10	335	170 T	165	3/4"	98	100			115		5.6
SP 18	385	220 T	103	3/4	90	100	130		113	(n.4)	5.7
	435	270 T								, ,	6.0
	515	350									6.6


On demand: T= TRI mode


Rating plate data

	k'	W	V 230/	′400 - Hz	0 0	11 11		
Type of pump	Input	Nom.	ln	n	cos ø	Q - maxQ	maxH - H	
,, , , , , , , , , , , , , , , , , , ,	(P1)	(P2)	Amp.	min-1		litres/min	metres	
SP 12	0.15	0.07	0.52/0.30	2770	0.71	12 - 65	4.5 - 0	
SP 18	0.17	0.09	0.55/0.32	2730	0.72	6 - 75	5.5 - 0	


Hydraulic performance curves (open impeller)

Head in metres (H) →	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Type of pump		Flow rate in litres/min (Q) ↓											
SP 12	65	61	57	52	47	41	35	29	21	12			
SP 18	75	71	67	63	58	53	48	42	35	28	18	6	

Type SP 12-18

Spare parts nomenclature

	Component
S02 .	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
\$12.	Terminal board cover
\$17.	Upper bearing
\$18.	Axis + rotor
S19.	Lower bearing
S23 .	Motor seal ring
S42 .	Terminal board
S53.	Pump body
S56.	TRI washer
S59.	Feed screw seal ring
S60.	Bushing
S62.	Impeller
S69.	O-ring
S74.	Feed screw

Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
Cast Iron G20
PBT
NBR***
Bronze***
PBT**
NBR
PBT**

SP 12

*On demand. Ax. AISI 416

**On demand Cast Iron G20

***Available only on suction pipe 350

SP 18
Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel*
-
NBR
-
Cast Iron G20
PBT
NBR***
Bronze***
PBT**
NBR
PBT**

*On demand. Ax. AISI 416

**On demand Cast Iron G20

***Available only on suction pipe 350

Type SP 25-33

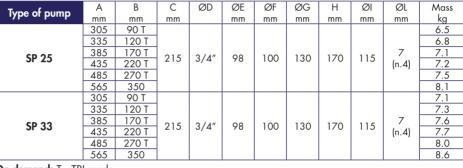
They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in PTB, pump body in cast iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

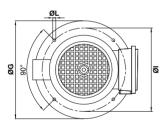
- machine tools (milling and turning machines)
 glass processing machinery (TRI version)
- surface treatment plants
- filtration systems

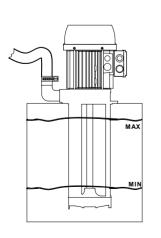

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

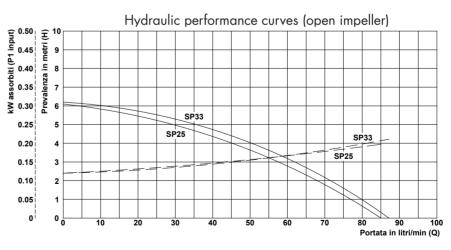
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

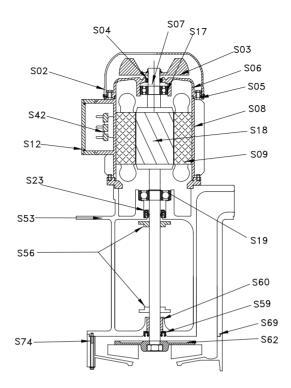
For different uses, please consult our Technical Office.


Size and weights table




On demand: T= TRI mode

Rating plate data


	k۱	W	V 230/	′400 - Hz	Q - maxQ	maxH - H	
Type of pump	Input	Nom.	ln	n	cos φ		
''''	(P1)	(P2)	Amp.	min-1		litres/min	metres
SP 25	0.26 0.18		0.85/0.49	2810	0.76	5 - 85	6 - 0
SP 33			1.13/0.65	2800	0.78	11 - 8 <i>7</i>	6 - 0

Head in metres (H) →	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
Type of pump		Flow rate in litres/min (Q) ↓													
SP 25	85	81	77	72	68	63	58	52	46	38	30	19	5		
SP 33	87	84	80	76	71	67	62	56	50	44	36	26	11		

Spare parts nomenclature

	C .
	Component
S02.	
S03.	
S04.	V-ring
S05 .	Stay rod
S06.	
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
\$18.	Axis + Rotor
S19.	Lower bearing
S21.	Flange
S23 .	Motor seal ring
	Terminal board
S53 .	Pump body
S56.	TRI washer
S59.	Feed screw seal ring
S60.	Bushing
S62.	Impeller
S69.	O-ring
S74.	Feed screw

Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
Aluminium
NBR
-
Cast Iron G20
PBT
NBR****
Bronze***
PBT***
NBR
PBT***

SP 25

*On demand Sheet metal

**On demand. Ax. AISI 416

***On demand Cast Iron G20

****Available only on suction pipe 350

SP 33
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
Aluminium
NBR
-
Cast Iron G20
PBT
NBR***
Bronze***
PBT***
NBR
PBT***

*On demand Sheet metal

**On demand. Ax. AISI 416

***On demand Cast Iron G20

****Available only on suction pipe 350

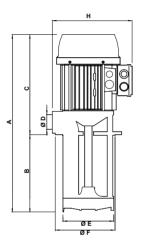
Type SP 50-75

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in PTB, pump body in cast iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

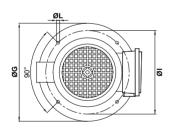

- They are commonly used on:
 machine tools (milling and turning machines)
- glass processing machinery (TRI version)
- surface treatment plants
- filtration systems

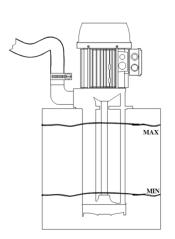
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4.5 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

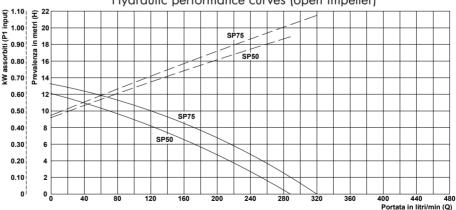
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

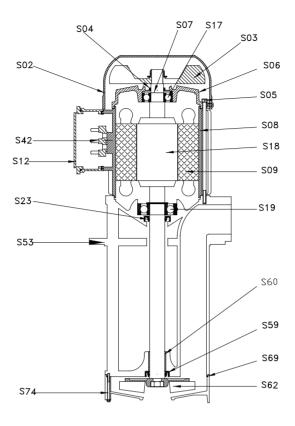

Size and weights table


Town of more	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pump	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	450	200 T				140				9	13.5
	520	270 T	250	1 1/4"	138		180				14.2
SP 50	600	350						215	160		15.0
	690	440								(n.4)	15.9
	800	550									17.0
	450	200 T									14.5
	520	270 T								9	15.2
SP 75	600	350	250	1 1/4"	138	140	180	215	160	· '	16.0
	690	440								(n.4)	16.9
	800	550									18.0

On demand: T= TRI mode


Rating plate data

		k'	W	V 230/	′400 - Hz	Q - maxQ	maxH - H	
	Type of pump	Input Nom.		ln	n	cos ø		· ·
		(P1)	(P2)	Amp.	min-1	· ·	litres/min	metres
	SP 50	1.00	0.75	3.24/1.87	2770	0.77	70 - 288	10 - 0
	SP 75	1.20	0.90	3.83/2.21	2760	0.78	55 - 320	12 - 0
L	51 / 5	1.20	0.70	0.00/2.21	2,00	0.70	33 - 320	12-0



Hydraulic performance curves (open impeller)

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump		Flow rate in litres/min (Q) ↓													
SP 50	288	271	251	234	215	194	172	150	125	100	70				
SP 75	320	304	289	272	254	236	216	195	172	147	120	55			

Type SP 50-75

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	
S04 .	V-ring
S05 .	Stay rod
S06.	
S07.	Balancing ring
	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	
S18.	Axis + Rotor
S19.	Lower bearing
S23.	Motor seal ring
S42.	Terminal board
S53.	Pump body
S59.	
S60.	Bushing
S62.	
S69.	
S74.	Feed screw

SP 50									
Materials									
Nylon*									
Nylon									
ŃBR									
Steel									
Aluminium									
Steel									
Aluminium									
-									
Nylon									
Steel * *									
- NIDD									
NBR									
- C20									
Cast Iron G20									
NBR									
Bronze PBT***									
NBR									
PRT***									
וטו									

*On demand Sheet metal
**On demand. Ax. AISI 416
***On demand Cast Iron G20

SP 75
Materials
Nylon*
Nylon
ŃBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Cast Iron G20
NBR
Bronze PBT***
NBR
PBT***

*On demand Sheet metal
**On demand. Ax. AISI 416
***On demand Cast Iron G20

Type SP 100-150

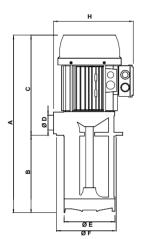
Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in PTB, pump body in cast iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 70°C.

They are commonly used on:

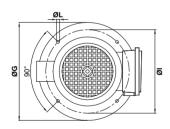

- machine tools (milling and turning machines)
- glass processing machinery (TRI version)
- surface treatment plants
- filtration systems

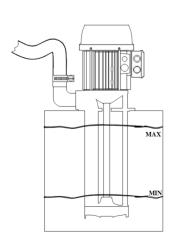
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

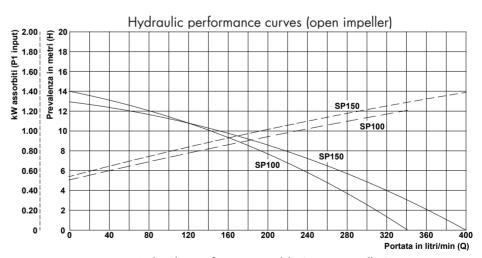
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

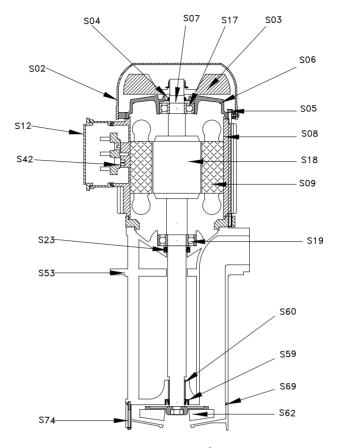

Size and weights table


Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	500	200 T									16.3
	570	270 T								9	1 <i>7</i> .1
SP 100	650	350	300	1 1/4"	138	140	180	230	160		18.1
	740	440								(n.4)	19.1
	850	550									20.3
	500	200 T									17.6
	570	270 T								9	18.4
SP 150	650	350	300	1 1/4"	138	140	180	230	160		19.3
	740	440								(n.4)	201
	850	550									21.9


On demand: T= TRI mode

Rating plate data

	k'	W	V 230	/400 - H	z 50	Q - maxQ	maxH - H
Type of pump	Input	Nom.	In	n	cos φ		
<i>'</i> ' ' '	(P1)	(P2)	Amp.	min-1		litres/min	metres
SP 100	1.41	1.1	4.3/2.5	2825	0.81	40 - 340	13 - 0
SP 150	1.86	1.5	5.7/3.3	2845	0.83	18 - 400	13 - 0



Head in metres (H) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Type of pump

Flow rate in litres/min (Q) \downarrow SP 100 340 326 310 292 275 255 236 216 195 171 144 114 79 40 SP 150 400 380 358 337 317 296 273 246 219 188 148 107 62 18

Type SP 100-150

Spare parts nomenclature

	Component
S02.	
S03.	Fan
S04.	V-ring
S 05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	
S12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + Rotor
S19.	Lower bearing
S23.	Motor seal ring
S42.	Terminal board
S53.	Pump body
S59.	Feed screw seal ring
S60.	Bushing
S62.	Impeller
S69.	O-ring
S74.	Feed screw

SP 100
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Cast Iron G20
NBR
Bronze
PBT***
NBR
PBT***

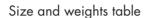
*On demand Sheet metal **On demand. Ax. AISI 416 ***On demand Cast Iron G20

SP 150
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Cast Iron G20
NBR
Bronze
PBT***
NBR
PBT***

*On demand Sheet metal **On demand. Ax. AISI 416 ***On demand Cast Iron G20

Type SQ

Uses

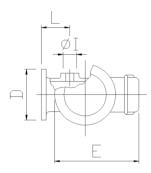

They are suitable for transferring liquids containing impurities up to 3 mm in size. Their hydraulic components: impeller in nylon and feed screw in cast-iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

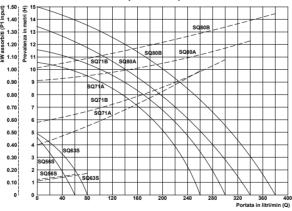
The temperature of the liquid must not exceed 70°C.

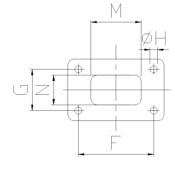
- They are commonly used on:
 machine tools (milling and turning machines)
 surface treatment plants (oil separators)

They must be installed laterally on the tank to allow the liquid to enter directly into the suction point (see figure). Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

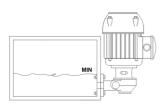
For different uses, please consult our Technical Office.

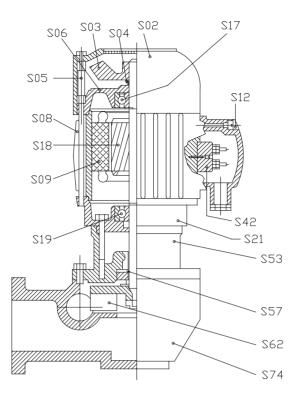

	Type of pump	Α	В	С	D	Е	F	G	ØH	ØI	L	Mass
	type of pump	mm	mm	mm	mm	mm	mm	mm	mm		mm	kg
Γ	SQ 56/S	265	170	60	95	140	75	45	7	3/8"	51	3.9
	SP 63/S	300	180	60	95	158	75	45	7	1/2"	51	4.9
Г	SP 71A	330	245	60	145	175	115	60	9	1"	62	14.5
	SP 71B	330	245	80	145	175	115	60	9	1"	62	15.2
	SP 80A	335	250	80	145	210	115	60	9	1 1/4"	62	16.3
	SQ 80B	335	250	80	145	210	115	60	9	1 ¼"	62	17.3
_	30 000	000	250	00	145	210	113	00		1 /4	UZ	17.0


Rating plate data


Head

	k'	W	V 230/	'400 - Hz	Q - maxQ	maxH - H	
Type of pump	Input (P1)	Nom. (P2)	In Amp.	n min-1	cos φ	litres/min	maxn - n metres
SQ 56/S	0.17	0.09	0.55/0.32	2730	0.72	11 - 60	4 - 0
SP 63/S	0.26	0.18	0.85/0.49	2810	0.76	27 - 80	4 - 0
SP 71A	1.00	0.75	3.24/1.87	2770	0.77	52 - 260	10 - 0
SP 71B	1.20	0.90	3.83/2.21	2760	0.78	98 - 300	10 - 0
SP 80A	1.41	1.1	4.3/2.5	2825	0.81	72 - 340	12 - 0
SQ 80B	1.41	1.1	4.3/2.5	2825	0.81	62 - 380	14 - 0


Hydraulic performance curves (open impeller)



Hydraulic performance table (open impeller)

in metres (H) \rightarrow	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump						Flov	w rate i	in litres,	/min (C	2) ↓					
SQ 56/S	60	48	35	27	11										
SP 63/S	80	69	54	41	27										
SP 71A	260	251	241	229	218	207	185	158	134	99	52				
SP 71B	300	289	277	264	251	235	213	190	167	141	98				
SP 80A	340	326	310	293	274	255	238	218	195	171	130	72			
SQ 80B	380	368	354	340	326	307	293	274	257	222	208	143	62		

Spare parts nomenclature

		SP 56	SP 63	SQ 71A-B	SQ 80A-B
	Component	Materials	Materials	Materials	Materials
S02.	Fan cover	Nylon*	Nylon*	Nylon*	Nylon*
S03.	Fan	Nylon	Nylon	Nylon	Nylon
S04.	V-ring	NBR	NBR	NBR	NBR
S05.	Stay rod	Steel	Steel	Steel	Steel
S06.	Upper shield	Aluminium	Aluminium	Aluminium	Aluminium
S07.	Balancing ring	Steel	Steel	Steel	Steel
S08.	Housing	Aluminium	Aluminium	Aluminium	Aluminium
S09.	Wound stator	-	-	-	-
S12.	Terminal board cover	Nylon	Nylon	Nylon	Nylon
S17.	Upper bearing	-	-	-	-
S18.	Axis + Rotor	Steel**	Steel**	Steel**	Steel**
S19.	Lower bearing	-	-	-	-
S21.	Flange	Aluminium	Aluminium	Aluminium	Aluminium
S42.	Terminal board	-	-	-	-
	Cone	PBT***	PBT***	Not available	Not available
S56.	TRI washer	PBT	PBT	PBT	PBT
	Mechanical seal	-	-	-	-
S59.	Feed screw seal ring	NBR	NBR	NBR	NBR
	Impeller	Nylon***	Nylon***	Brass 58***	Brass 58***
	O-ring	NBR	NBR	Not available	Not available
	Adaptor coupling	Not available!	Not available!	Cast Iron G20	Cast Iron G20
	Feed screw	Cast Iron G20	Cast Iron G20	Cast Iron G20	Cast Iron G20

^{*}On demand Sheet metal

**On demand.Ax.AISI 416

^{***}On demand Cast Iron G20 ***On demand Cast Iron G20 ***On demand Cast Iron G20 ***On demand Cast Iron G20

Type AU

<u>Uses</u>

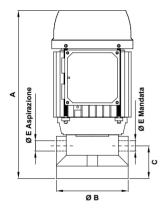
They are suitable for transferring clean liquids containing impurities up to 0.03 mm in size.

Their hydraulic components: impeller in brass, bottom in cast iron and pump body in aluminium allow them to be used with emulsions, oily substances and liquids in general provided they are not oxidative for the construction

Viscosity must not exceed 21 cST (3° Engel).

They must be installed on the top of the tank and be primed before use.

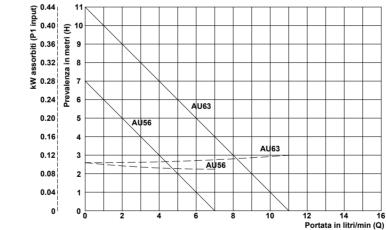
Should the pump suck air due to a lack of liquid, the priming operation must be repeated.

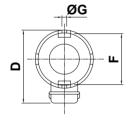

To ensure proper life to the pump, do not let it run dry, as the mechanical seal is not lubricated.

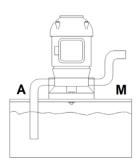
It is advisable, where possible, to install a suction filter.

For different uses, please consult our Technical Office.

Size and weights table

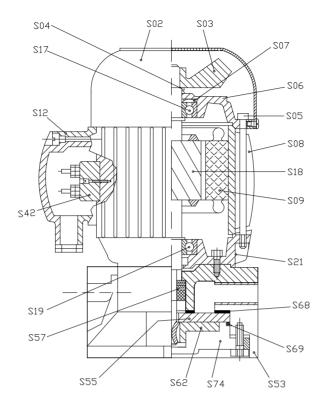

Type of nump	Α	ØB	С	D	ØE	ØF	ØG	Mass
Type of pump	mm	mm	mm	mm		mm	mm	kg
AU 56	215	115	48	144	3/8"	95	7	4.3
AU 63	270	115	48	165	1/2"	95	7	5.0




Rating plate data

	k'	N	V 230/	400 - Hz	Q - maxQ	maxH - H	
Type of pump	Input Nom.		ln	n cos φ			· ·
	(P1)	(P2)	Amp.	min-1		litres/min	metres
AU 56	0.17	0.09	0.55/0.32	2730	0.72	1 - <i>7</i>	6 - 0
AU 63	0.26	0.18	0.85/0.49	2810	0.76	2 - 13	10 - 0

Hydraulic performance curves (peripheral impeller)



Hydraulic performance table (peripheral impeller)

				<u> </u>					- 11						
Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump	Flow rate in litres/min (Q) ↓														
AU 56	7	6	5	4	3	2	1								
AU 63	11	10	9	8	7	6	5	4	3	2	1				

Type AU

Spare parts nomenclature

	Component						
S02.	Fan cover						
S03 .	Fan						
S04.	V-ring						
S 05.	Stay rod						
S06.	Upper shield						
S07.	Balancing ring						
S08.	Housing						
S09.	Wound stator						
S12.	Terminal board cover						
S17.	1 - 1 - 1 - 1 - 1 - 1						
\$18.	Axis + Rotor						
S19.	Lower bearing						
S21.							
S42.	Terminal board						
S53.	Pump body						
\$55.	Diffuser						
S57.	Mechanical seal						
S62.	Impeller						
S68.	Gasket						
S69.	O-ring						
S74.	Bottom						

AU 56
Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Aluminium
-
Aluminium
Cast Iron G20
NBR
Brass 58
Guarnital
Viton
Cast Iron G20

AU 63
Materials
Nylon
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Aluminium
-
Aluminium
Cast Iron G20
NBR
Brass 58
Guarnital
Viton
Cast Iron G20

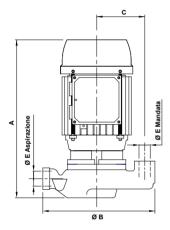
Type TR

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size. Their hydraulic components: impeller in brass and feed screw in cast-iron allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 90°C.

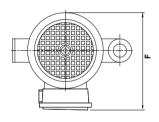
They are normally used when there is no space on the top of the tank.

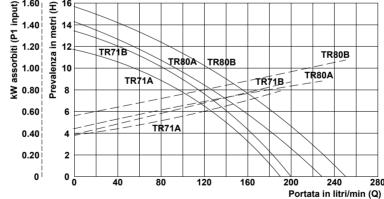

They must be installed laterally on the tank to allow the liquid to enter directly into the suction point (see figure). Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

To ensure proper life to the pump, do not let it run dry, as the mechanical seal is not lubricated.

For different uses, please consult our Technical Office.

Size and weights table

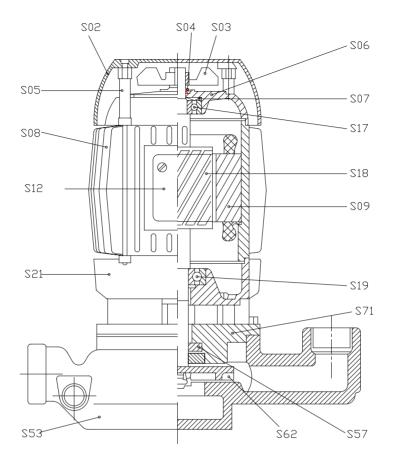

Type of pump	Α	В	С	ØD	E	F	Mass
Type or pomp	mm	mm	mm		mm	mm	kg
TR 71A	320	290	130	1"	40	220	12.1
TR 71B	320	290	130	1"	40	220	13.0
TR 80A	370	290	130	1"	40	220	13.9
TR 80B	370	290	130	1"	40	220	14.7



Rating plate data

	k'	W	V 230/	′400 - Hz	0		
Type of pump	Input	Nom.	ln	n	cos ф	Q - maxQ	maxH - H
71	(P1)	(P2)	Amp.	min-1		litres/min	metres
TR 71A	1.00	0.75	3.24/1.87	2770	0.77	55 - 190	10 - 0
TR 71B	1.20	0.90	3.83/2.21	2760	0.78	41 - 200	12 - 0
TR 80A	1.01	0.75	3.1/1.8	2800	0.80	55 - 230	12 - 0
TR 80B	1.41	1.1	4.3/2.5	2825	0.81	45 - 250	14 - 0

Hydraulic performance curves (open impeller)



Hydraulic performance table (open impeller)

Head in metres (H) →	0	1	2	3	4	5	6	7	8	9	10	12	14	16	18
Type of pump		Flow rate in litres/min (Q) ↓													
TR 71A	190	182	172	162	152	140	127	113	96	78	55				
TR 71B	200	192	183	174	164	153	141	128	115	100	82	41			
TR 80A	230	218	207	195	183	170	156	142	127	111	94	55			
TR 80B	250	240	230	220	208	196	183	169	155	140	124	88	45		

Type TR

Spare parts nomenclature

		TR 71A	TR 71B	TR 80A	TR 80B
	Component	Materials	Materials	Materials	Materials
S02.	Fan cover	Nylon*	Nylon*	Nylon*	Nylon*
S03.	Fan	Nylon	Nylon	Nylon	Nylon
S04.	V-ring	NBR	NBR	NBR	NBR
S05 .	Stay rod	Steel	Steel	Steel	Steel
S06.	Upper shield	Aluminium	Aluminium	Aluminium	Aluminium
S07.		Steel	Steel	Steel	Steel
S08.	Housing	Aluminium	Aluminium	Aluminium	Aluminium
S09.	Wound stator	-	-	-	-
\$12.	Terminal board cover	Nylon	Nylon	Nylon	Nylon
S17 .	Upper bearing	-	-	-	-
\$18.	Axis + Rotor	Steel**	Steel**	Steel**	Steel**
S19.	Lower bearing	-	-	-	-
S21.	Flange	Aluminium	Aluminium	Aluminium	Aluminium
S42.	Terminal board	-	-	-	-
S57.	Mechanical seal	Viton	Viton	Viton	Viton
S62.	Impeller	Brass 58	Brass 58	Brass 58	Brass 58
S7 1.	Adaptor coupling	Cast Iron G20	Cast Iron G20	Cast Iron G20	Cast Iron G20
S74.	Feed screw	Cast Iron G20	Cast Iron G20	Cast Iron G20	Cast Iron G20

*On demand Sheet metal *On demand Sheet metal *On demand Sheet metal

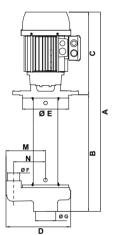
Type AP 80-90 closed impeller

Uses

They are suitable for transferring liquids containing impurities up to 2 mm in size.

Their hydraulic components: impeller and feed screw in cast iron, pump body in cast iron/steel allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

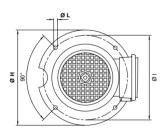

- machine tools (milling and turning machines-machining centres)
- glass processing machinery
- surface treatment plants
- filtration systems

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 6-7 cm from the bottom.

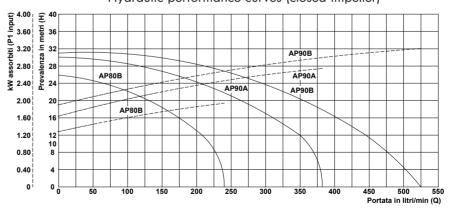
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

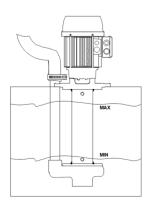
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.



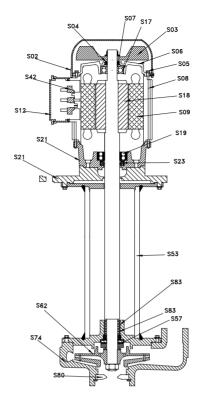
Size and weights table


Type of pump	Α	В	С	D	ØE	ØF	ØG	ØH	ØI	ØL	М	Ν	Mass
Type of pullip	mm	mm	mm	mm	mm			mm	mm	mm	mm	mm	kg
	620	320						½″ 300					37.0
AP 80B	750	450	300	000	240	1 ½"	2 ½"		270	13	170	136	43.0
AP OUD	910	610	300	280	240	1 72	Z 72		270	(n.4)	170	130	46.0
	1160	860											48.0
	675	320	355								170	136	41.0
AP 90A	805	450		280	240	1 1/2"	2 ½"	300	270	13			47.0
AP 90A	965	610		200	240	1 72	Z 72	300	2/0	(n.4)			49.0
	1215	860								` '			51.0
	675	320											43.0
AD OOD	805	450	355	200	240	1 1/2"	2 ½"	200	270	13	170	124	49.0
AP 90B	965	610	333	280	240	I 1/2	Z 1/2	300	2/0	(n.4)	1/0	136	51.0
	1215	860											53.0


Rating plate data

		k'	W	V 230,	/400 - Hz	00		
	Type of pump	Input	Nom.	In	n	cos φ	Q - maxQ	maxH - H
	<i>''</i> ' ' '	(P1)	(P2)	Amp.	min-1		litres/min	metres
ſ	AP 80B	1.86	1.5	5.7/3.3	2845	0.83	65 - 240	25 - 0
	AP 90A	2.70	2.2	8.1/4.7	2870	0.83	14 -382	30 - 0
	AP 90B	3.58 3.0		10.6/6.1	2855	0.84	119 - 525	30 - 0

Hydraulic performance curves (closed impeller)



Hydraulic performance table (closed impeller)

/												
Head in metres (H) →	0	10	12	14	16	18	20	22	24	26	28	30
Type of pump		Flow rate in litres/min (Q) ↓										
AP 80B	B 240 222 207 191 173 152 129 106 65											
AP 90A	OA 382 367 350 331 311 289 266 241 211										99	14
AP 90B	525	468	449	423	400	374	346	315	276	237	192	119

Submersible motor-driven pumps Type AP 80-90 closed impeller

Spare parts nomenclature

	Component							
S02.	Fan cover							
S03.	Fan							
S04.	V-ring							
S05.	Stay rod							
S06.	Upper shield							
S07.	Balancing ring							
S08.	Housing							
	Wound stator							
S12.	Terminal board cover							
	Upper bearing							
	Axis + Rotor							
	Lower bearing							
S21.								
S21.	11 0							
S23 .	Ų							
S42.	Terminal board							
S53.								
S57.								
S62.								
S74.	Feed screw							
S80.								
S83.	IR rings							
S83.	Bushing							

Nylon* Nylon NBR Steel Aluminium
NBR Steel Aluminium
Steel Aluminium
Aluminium
C. I
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon
Steel**
Bronze**

AP 80

*On demand Sheet metal
****Available only on suction pipe 860

711 70
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon
Steel**
Bronze**

AP 90

*On demand Sheet metal
****Available only on suction pipe 860

Rev. 02/2017 43 **** SACEMI**

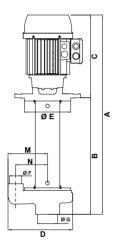
Submersible motor-driven pumps Type AP 100-112 closed impeller

Uses

They are suitable for transferring liquids containing impurities up to 2 mm in size.

Their hydraulic components: impeller and feed screw in cast iron, pump body in cast iron/steel allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

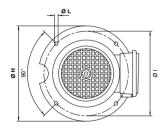

- machine tools (milling and turning machines-machining centres)
- glass processing machinery
- surface treatment plants
- filtration systems

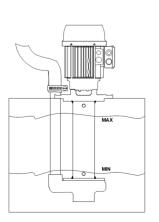
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 6-7 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

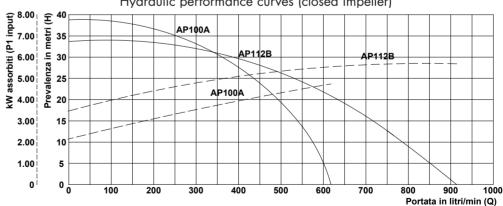
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

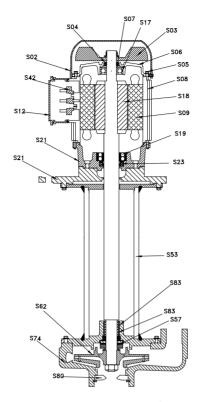



Size and weights table

Type of pump	Α	В	С	D	ØE	ØF	ØG	ØH	ØI	ØL	М	N	Mass
Type of pullip	mm	mm	mm	mm	mm			mm	mm	mm	mm	mm	kg
	700	320	380	280	240	1 ½″	2 ½″	300	270	13 (n.4)	170	136	37.0
AP 100A	830	450											43.0
	990	610											46.0
	1240	860											48.0
	730	320		220	240	2 ½"	2 ½"	300	270	13 (n.4)	170	136	43.0
AP 112B	860	450	410										49.0
	1020	610	410	320									51.0
	1270	860											53.0


Rating plate data

0 1								
	k\	W	V 230/	400 - Hz	50	0 0	maxH - H metres	
Type of pump	Input (P1)	Nom. (P2)	In Amp.	n min-1	cos φ	Q - maxQ litres/min		
AP 100A	4.85	4	14.9/8.6	2875	0.81	138 - 612	38 - 0	
AP 112B	6.57	5.5	18.7/10.8	2900	0.88	73 - 914	34 - 0	


Hydraulic performance curves (closed impeller)

Hydraulic performance table (closed impeller)

Head in metres (H) →	0	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38
Type of pump		Flow rate in litres/min (Q) ↓														
AP 100A	612	577	561	545	528	511	492	471	450	426	394	360	323	286	234	138
AP 112B	914	786	772	752	731	706	677	635	580	507	432	346	239	73		

Submersible motor-driven pumps Type AP 100-112 closed impeller

Spare parts nomenclature

	Component						
S02.	•						
S03.							
	V-ring						
	Stay rod						
S06.							
S07.							
S08.							
	Wound stator						
\$12.	Terminal board cover						
	Upper bearing						
	Axis + Rotor						
	Lower bearing						
	Motor flange						
	Support flange						
	Motor seal ring						
S42.	Terminal board						
S53 .	Pump body						
S57.	Mechanical seal						
	Impeller						
S74.	Feed screw						
S80.	Suction reduction						
S83.	IR rings						
S83.	Bushing						

Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon Steel**
Steel**
Bronze**

AP 100 Materials

*On demand Sheet metal **Available only on suction pipe 860

Materials

AP 112

*On demand Sheet metal **Available only on suction pipe 860

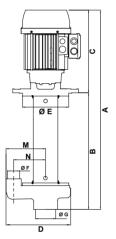
Type AP 90 open impeller

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in cast iron, pump body in cast iron/steel allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

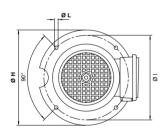

- machine tools (milling and turning machines-machining centres)
- glass processing machinery
- surface treatment plants
- filtration systems

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 6-7 cm from the bottom.

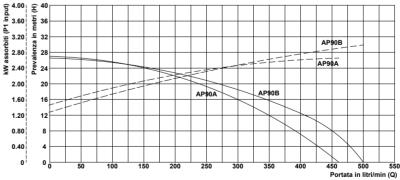
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

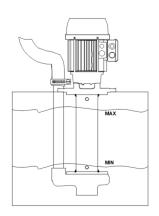
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.



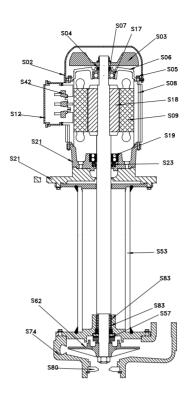
Size and weights table


Type of pump	Α	В	С	D	ØE	ØF	ØG	ØH	ØI	ØL	M	Ν	Mass
Type of pullip	mm	mm	mm	mm	mm			mm	mm	mm	mm	mm	kg
	675	320		280	240	1 1/2"	2 ½"	300	270	13 (n.4)	170	136	41.0
AP 90A	805	450	355										47.0
	965	610				1 72							49.0
	1215	860											51.0
	675	320		280	240	1 1/ //	2 ½"	300	270	13 (n.4)	170	136	43.0
AD OOD	805	450	255										49.0
AP 90B	965	610	355			1 ½"							51.0
	1215	860											53.0


Rating plate data

	k۱	W	V 230/	400 - Hz	0 0	Hmax - H		
Type of pump	Input Nom.		In n		cos ϕ	Q - Qmax	Птах - П	
	(P2) (P2)		Amp.	min-1	·	litres/min	metres	
AP 90A	2.70	2.2	8.1/4.7	2870	0.83	85 - 461	26 - 0	
AP 90B	3.58	3	10.6/6.10	2850	0.86	66 - 500	26 - 0	

Hydraulic performance curves (open impeller)



Hydraulic performance table (open impeller)

Head in metres (H) →	0	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Type of pump		Flow rate in litres/min (Q) ↓													
AP 90A	461	461 374 351 326 300 270 235 198 154 85													
AP 90B	500	436	403	369	338	309	273	233	178	66					

Type AP 90 open impeller

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + Rotor
S19.	Lower bearing
S21.	Motor flange
S21.	Support flange
S23.	Motor seal ring
S42.	Terminal board
S53.	
S57.	Mechanical seal
S62.	Impeller
S74.	Feed screw
S80.	Suction reduction
S83.	IR rings
S83.	Bushing

Nylon*

AP 80 Materials

Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon
**
Bronze**

*On demand Sheet metal **Available only on suction pipe 860

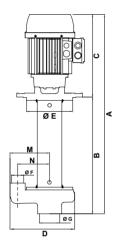
Submersible motor-driven pumps Type AP 100-112 open impeller

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller and feed screw in cast iron, pump body in cast iron/steel allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

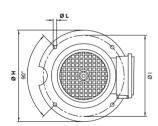

- machine tools (milling and turning machines-machining centres)
- glass processing machinery
- surface treatment plants
- filtration systems

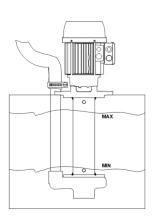
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 6-7 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

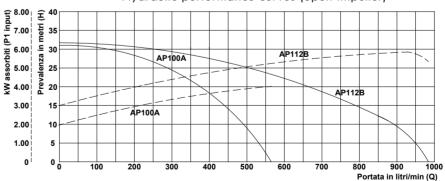
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

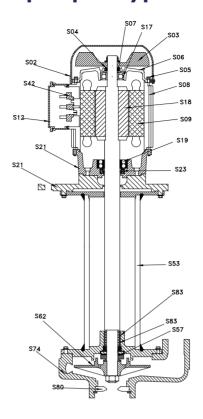



Size and weights table

	Type of pump	Α	В	С	D	ØE	ØF	ØG	ØH	ØI	ØL	M	Ν	Mass
	Type of pullip	mm	mm	mm	mm	mm			mm	mm	mm	mm	mm	kg
ſ		700	320											37.0
AD 100A	830	450	380	200	240	1 1/2"	2 ½"	300	270	13	13 170	136	43.0	
	AP 100A	990	610	360	280	240	1 72	Z 72	300	2/0	(n.4)	170	130	46.0
		1240	860											48.0
ſ		730	320		320	0.40	0.1/#		300	270			136	43.0
	AP 112B	860	450	410				0.1/ //			13	170		49.0
1	AF IIZB	1020	610	410		240	2 ½"	2 ½"			(n.4)	170		51.0
L		1270	860											53.0


Rating plate data

	k۱	W	V 230/	'400 - Hz	50	00	
Type of pump	Input	Nom.	ln	n,	cos φ	Q - maxQ	maxH - H
· · · ·	(P1) (P2)		Amp.	min ^{- I}		litres/min	metres
AP 100A	4.85	4	14.9/8.6	2875	0.81	156 - 565	30 - 0
AP 112B	6.57	5.5	18.7/10.8	2900	0.88	48 - 984	32 - 0



Hydraulic performance curves (open impeller)

Head in metres (H) →	<10	10	12	14	16	18	20	22	24	26	28	30	32	34	36
Type of pump		Flow rate in litres/min (Q) ↓													
AP 100A	565	495	475	454	431	406	375	342	306	270	224	156			
AP 112B	984	893	865	814	765	712	655	596	528	461	372	257	48		

Submersible motor-driven pumps Type AP 100-112 open impeller

Spare parts nomenclature

	Component
S02 .	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
\$12.	Terminal board cover
S17.	Upper bearing
\$18.	Axis + Rotor
S19.	Lower bearing
S21 .	Motor flange
S21 .	Support flange
S23 .	Motor seal ring
S42 .	Terminal board
S53.	Pump body
S57.	Mechanical seal
S62.	Impeller
S74 .	Feed screw
S80.	Suction reduction
S83 .	IR rings
S83.	Bushing

AI 100
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon Steel**
Steel**
Bronze**

AP 100

*On demand Sheet metal
**Available only on suction pipe 860

AP 112
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20/Steel
-
Cast Iron G20
Cast Iron G20
Nylon
Steel**
Bronze**

*On demand Sheet metal
**Available only on suction pipe 860

Rev. 02/2017 49 **** SACEMI**

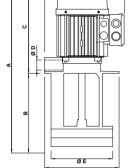
Type MP 63-71

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size. Their hydraulic components: impeller in brass, feed screw and pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

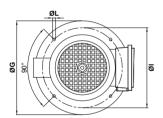
- They are commonly used on:
 machine tools (milling and turning machines-machining centres)
- glass processing machinery
 filtration systems

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

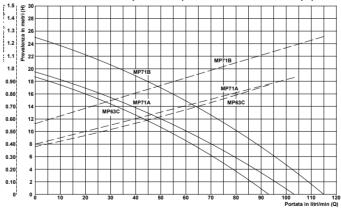

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

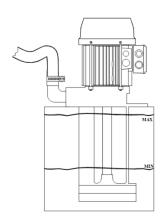
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.


Size and weights table

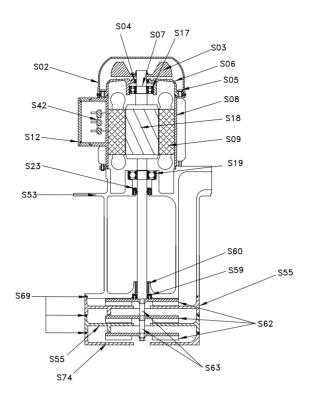
Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	385	180									6.8
MP 63C	435	230	205	3/4"	128	130	180	190	150	9 (n.4)	6.9
	485	280	203	3/4	120						7.0
	535	330									<i>7</i> .1
	410	180	230	3/4"						9 (n.4)	8.8
MP 71A	460	230			128	130	180	190	150		9.0
MP/IA	510	280			120	130	160	190	130		9.1
	560	330									9.3
	440	210									10.4
AAD 71D	490	260	220	2/4//	100	130	100	100	150	9	10.6
MP 71B	540	310	230	3/4"	128	130	180	190	150	(n.4)	10.7
	590	360									10.9




Rating plate data

	k'	W	V 230/	400 - Hz	0 0		
Type of pump	Input	Nom.	ln	n,	cos φ	Q - maxQ	maxH - H
71	(P1)	(P2)	Amp.	min ⁻¹		litres/min	metres
MP 63C	0.74	0.55	2.30/1.33	2755	0.81	6 - 93	18 - 0
MP 71A	1.00	0.75	3.24/1.87	2770	0.77	12 - 103	18 - 0
MP 71B	1.20	0.90	3.83/2.21	2760	0.78	8 - 115	24 - 0

Hydraulic performance curves (open impeller)



Hydraulic performance table (open impeller)

		/			_															
Head in metres (H) →	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28					
Type of pump		Flow rate in litres/min (Q) ↓																		
MP 63C	93	86	79	71	63	53	43	32	20	6										
MP 71A	103	96	88	79	70	61	50	38	26	12										
MP 71B	115	109	102	96	88	81	73	64	55	45	34	22	8							

Type MP 63-71

Spare parts nomenclature

		MP 63C
	Component	Materials
S02.	Fan cover	Nylon*
S03.	Fan	Nylon
S04.	V-ring	NBR
S05 .	Stay rod	Steel
S06.	Upper shield	Aluminium
S07.	Balancing ring	Steel
S08.	Housing	Aluminium
S09.	Wound stator	-
\$12.	Terminal board cover	Nylon
S17.	Upper bearing	-
\$18.	Axis + Rotor	Steel * *
S19.	Lower bearing	-
S23.	Motor seal ring	NBR
S42.	Terminal board	-
S53.	Pump body	Aluminium
S55.	Diffuser	Aluminium
S59.	Feed screw seal ring	NBR
S60.	Bushing	Bronze
S62.	Impeller	Brass 58
S63.	Spacer ring	Steel
S69.	O-ring	NBR
S74.	Feed screw	Aluminium

*On demand Sheet metal
**On demand.Ax.AISI 416

MP 71A	MP 71B
Materials	Materials
Nylon*	Nylon*
Nylon	Nylon
NBR	NBR
Steel	Steel
Aluminium	Aluminium
Steel	Steel
Aluminium	Aluminium
-	-
Nylon	Nylon
-	-
Steel**	Steel**
-	-
NBR	NBR
-	-
Aluminium	Aluminium
Aluminium	Aluminium
NBR	NBR
Bronze	Bronze
Brass 58	Brass 58
Steel	Steel
NBR	NBR
Aluminium	Aluminium

*On demand Sheet metal *On demand Sheet metal
**On demand.Ax.AISI 416 **On demand.Ax.AISI 416

Type MP 80-90-100

Uses

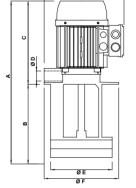
They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller in brass, feed screw and pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel). The temperature of the liquid must not exceed 90°C.

They are commonly used on:

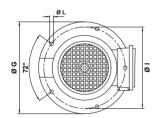
- machine tools (milling and turning machines-machining centres)
- filtration systems

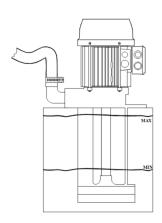
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom.

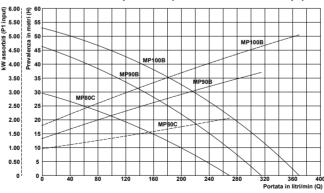

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

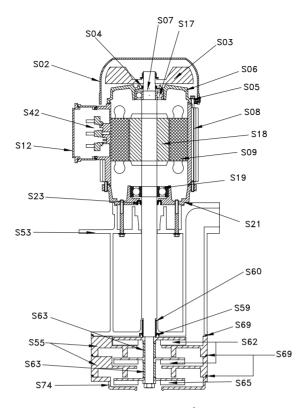
For different uses, please consult our Technical Office.


Size and weights table


Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	517	230					0 000				16.5
MP 80C	567	280	287	1"	190	190		000	204	9	1 <i>7</i> .0
MP OUC	642	355	20/		190	190	230	245	204	(n.5)	17.5
	757	470								' '	18.0
	590	265		1"							22.0
AAD OOD	640	315	325		190	190	230	255	204	9 (n.5)	22.5
MP 90B	715	390			190	190	230	233	204		23.0
	830	505									23.5
	625	265									32.0
	675	315								9	32.5
MP 100B	725	365	360	1 1/4"	202	220	250	275	235	· '	33.0
	775	415								(n.5)	33.5
	955	595									35.5


Rating plate data

	k'	W	V 230/	′400 - Hz	00		
Type of pump	Input	Nom.	ln	n	cos ø	Q - maxQ	maxH - H
" ' '	(P1)	(P2)	Amp.	min-1		litres/min	metres
MP 80C	\ / / \ /		5.7/3.3	2845	0.83	22 - 269	28 - 0
MP 90B			10.6/6.10	2850	0.86	17 - 315	45 - 0
MP 100B	4.85	4	14.9/8.6	2875	0.81	37 - 368	50 - 0


Hydraulic performance curves (open impeller)

Hydraulic performance table (open impeller)

Head in metres (H) 	0	4	8	12	16	20	24	28	32	36	40	45	50	55	60
Type of pump		Flow rate in litres/min (Q) ↓													
MP 80C	269	244	215	184	148	106	68	22							
MP 90B	307	293	276	257	236	213	187	159	130	97	63	1 <i>7</i>			
MP 100B	360	349	333	316	297	280	256	233	207	178	141	94	37		

Type MP 80-90-100

Spare parts nomenclature

	Component
S02.	
S03.	Fan
S04.	V-ring
S 05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
	Wound stator
\$12.	Terminal board cover
S17.	Upper bearing
\$18.	Axis + Rotor
S19.	Lower bearing
	Motor seal ring
S42.	Terminal board
	Pump body
S55.	Diffuser
	Feed screw seal ring
S60.	Bushing
	High impeller
S63.	Upper spacer ring
S63.	Lower spacer ring
	Low impeller
S69.	O-ring
S74 .	Feed screw

MP 80C	MP 90B	MP 100B				
Materials	Materials	Materials				
Nylon*	Nylon*	Nylon*				
Nylon	Nylon	Nylon				
NBR	NBR	NBR				
Steel	Steel	Steel				
Aluminium	Aluminium	Aluminium				
Steel	Steel	Steel				
Aluminium	Aluminium	Aluminium				
-	-	-				
Nylon	Nylon	Nylon				
-	-	-				
Steel	Steel	Steel				
-	-	-				
NBR	NBR	NBR				
-	-	-				
Aluminium	Aluminium	Aluminium				
Aluminium (no 1)	Aluminium (no 2)	Aluminium (no 2)				
NBR	NBR	NBR				
Bronze	Bronze	Bronze				
Brass 58	Brass 58	Cast Iron G20				
Steel	Steel	Steel				
Not available	Steel	Steel				
Brass 58	Brass 58	Cast Iron G20				
NBR	NBR	NBR				
Aluminium	Aluminium	Aluminium				

^{*}On demand Sheet metal *On demand Sheet metal *On demand Sheet metal

Type MPC

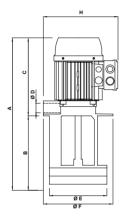
They are suitable for transferring liquids containing impurities up to 2 mm in size.

Their hydraulic components: impeller in brass, feed screw and pump body in aluminium allow them to be used with water, emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 90°C.

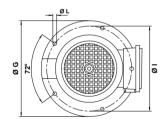
They are commonly used on:

- machine tools (milling and turning machines-machining centres)

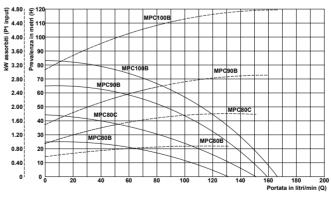

- filtration systems

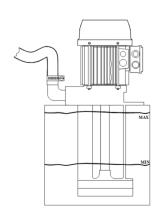
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm from the bottom. It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure). Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.


Size and weights table

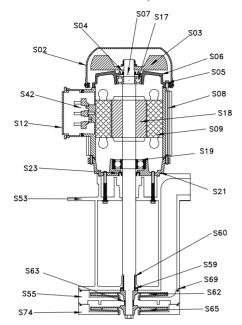
	A	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pump	mm	mm	mm	~ 5	mm	mm	mm	mm	mm	mm	kg
	490	210									16.0
MPC 80B	540	260	280	1″	190		230	245	204	9	16.1
MIPC OUD	615	335	200	'	190	-		243	204	(n.4)	16.2
	<i>7</i> 30	450								` '	18.0
	520	240				-					17.9
MPC 80C	570	290	280	1"	190		230	245	204	9	18.0
MPC 80C	645	365	200		190		230	243	204	(n.4)	18.1
	760	480									19.0
	583	260		1 //							25.5
MPC 90B	633	310	323		1"	190		230	255	204	9
MFC 70B	708	385	323	'	170	-	230	255	204	(n.4)	25.7
	823	500									27.5
	650	280									38.5
	700 330								9	39.0	
MPC 100B	750	380	370	1 1/4"	202	220	250	275	235	(n.4)	39.5
	800	430								(11.4)	40.0
	980	610									42.2



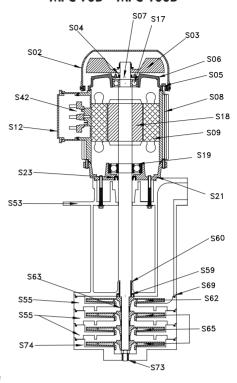

Rating plate data

	k'	W	V 230,	/400 - Hz	z 50	00	
Type of pump	Input	Nom.	In	n	cos ø	Q - maxQ	maxH - H
, , , , , , , , , , , , , , , , , , ,	(P1)	(P2)	Amp.	min-1		litres/min	metres
MPC 80B	1.41	1.1	4.3/2.5	2825	0.81	5 - 131	25 - 0
MPC 80C	1.86	1.5	5.7/3.3	2845	0.83	40 - 151	40 - 0
MPC 90B	2.70	2.2	8.1/4.7	2870	0.83	40 - 154	60 - 0
MPC 100B	4.85	4	14.9/8.6	2875	0.81	27 - 160	80 - 0

Hydraulic performance curves (closed impeller)



Hydraulic performance table (closed impeller)


_	Head in metres (H) →	0	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100
	Type of pump		Flow rate in litres/min (Q) \downarrow														
[MPC 80B	131	119	109	88	58	5										
	MPC 80C	151	142	134	124	118	102	93	71	40							
	MPC 90B	150	152	149	145	140	135	126	118	107	94	78	40				
	MPC 100B	160	156	154	152	149	146	142	135	128	121	113	93	60	27		

Type MPC

MPC 80B/C

MPC 90B - MPC 100B

Spare parts nomenclature

		MPC 80B/C	MPC 90B	MPC 100B
	Component	Materials	Materials	Materials
S02.		Nylon*	Nylon*	Nylon*
S03.	Fan	Nylon	Nylon	Nylon
S04.	V-ring	NBR	NBR	NBR
S 05.	Stay rod	Steel	Steel	Steel
S06.		Aluminium	Aluminium	Aluminium
S07.	Balancing ring	Steel	Steel	Steel
S08.	Housing	Aluminium	Aluminium	Aluminium
S09.	Wound stator	-	-	-
\$12.	Terminal board cover	Nylon	Nylon	Nylon
S17.	Upper bearing	-	-	- -
\$18.	Axis + Rotor	Steel	Steel	Steel
S19.	Lower bearing	-	-	-
S21.	Flange	Aluminium	Aluminium	Aluminium
S23.	Motor seal ring	NBR	NBR	NBR
S42.	Terminal board	-	-	-
S53.	Pump body	Aluminium	Aluminium	Aluminium
S55.	Upper diffuser	Aluminium (80C)	Aluminium	Aluminium
\$55.	Intermediate diffuser	Not available	Not available	Aluminium
S59.	Feed screw seal ring	NBR	NBR	NBR
S60.	Bushing	Bronze	Bronze	Bronze
S62.	High impeller	Brass 58	Brass 58	Brass 58
S63.		Steel (80C)	Steel	Steel
S65.	Low impeller	Brass 58	Brass 58	Brass 58
S69.		NBR	NBR	NBR
S73.	Lower bushing	Not available	Not available	Bronze
S74 .	Feed screw	Aluminium	Aluminium	Aluminium

*On demand Sheet metal

*On demand Sheet metal

*On demand Sheet metal

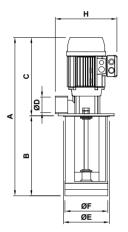
Type MSPV

Uses

They are suitable for transferring liquids containing impurities up to 3 mm in size.

Their hydraulic components: impeller, feed screw and pump body in PBT allow them to be used with emulsions and oily substances in general, with a viscosity not exceeding 21 cSt (3° Engel).

The temperature of the liquid must not exceed 90°C.

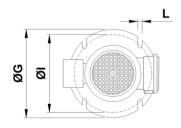

- They are commonly used on:
 machine tools (milling and turning machines-machining centres)
- glass processing machinery
- printing machinesfiltration systems
- air-conditioning systems

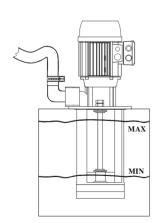
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 4-5 cm

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

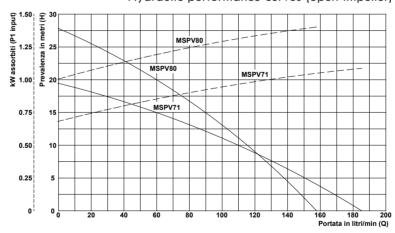
Should the liquid be particularly dirty, it is advisable to build a compartment tank in order to allow the sludge to deposit before it is sucked by the pump.

For different uses, please consult our Technical Office.

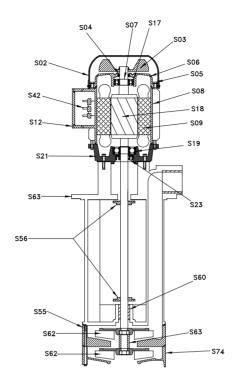



Size and weights table

Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	500	230								0	9.7
MSPV 71	570	300	270	1 1/4"	139	138	178	215	160		9.8
	650	380								(n.4)	9.9
	560	260								0	13.7
MSPV 80	630	330	300	1 1/4"	139	138	38 178	178 230	160	/- A\	13.9
	710	410								(n.4)	14.0


Rating plate data

	k۱	W	V 230/	400 - Hz	50	Q - Qmax	maxH - H	
Type of pump	Input Nom.		ln	n,	cos φ	Q - Qmax	maxn - n	
, , , , , , , , , , , , , , , , , , ,	(P1)	(P2)	Amp.	min ^{- l}		litres/min	metres	
MSPV 71	1.34	1.00	4.24/2.45	2760	0.79	22 - 185	18 - 0	
MSPV 80	1.86	1.5	5.7/3.3	2845	0.83	16 - 158	26 - 0	


Hydraulic performance curves (open impeller)

Hydraulic performance table (open impeller)

Head in metres (H) →	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28
Type of pump		Flow rate in litres/min (Q) ↓													
MSPV 71	185	172	161	147	129	112	88	65	45	22					
MSPV 80	158	150	143	134	125	116	106	95	83	71	59	45	32	16	

Type MSPV

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	
S06.	Upper shield
S07.	
S08.	Housing
S09.	
\$12.	Terminal board cover
S17.	Upper bearing
S18.	
	Lower bearing
S21.	
S21.	
S23.	9
	Terminal board
S53.	- /
S55.	
S56.	11.5.5
S60.	Ģ
S62.	-
S63.	Spacer ring
S74.	Feed screw

MSPV 71
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel
-
Cast Iron G20
Cast Iron G20
NBR
-
Cast Iron G20
Nylon
PBT
Engineering plastic
PBT
AISI 416
PBT

*On demand Sheet metal

MSPV 80									
Materials									
Nylon*									
Nylon									
NBR									
Steel									
Aluminium									
Steel									
Aluminium									
-									
Nylon									
-									
Steel									
-									
Cast Iron G20									
Cast Iron G20									
NBR									
-									
Cast Iron G20									
Nylon									
PBT									
Engineering plastic									
PBT									
AISI 416									
PBT									

^{*}On demand Sheet metal

Type EPC 63-71

<u>Uses</u>

They are suitable for transferring clean liquids containing impurities up to 0.03 mm in size.

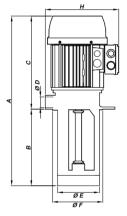
Their hydraulic components: impeller in brass, feed screw and pump body in cast-iron allow them to be used with emulsions and oily substances, glycol and liquids in general provded they are not oxidative for the construction materials.

Viscosity must not exceed 21 cST (3° Engel).

The temperature of the liquid must not exceed 90°C.

They are commonly used on:

- drilling centres
- cooling units

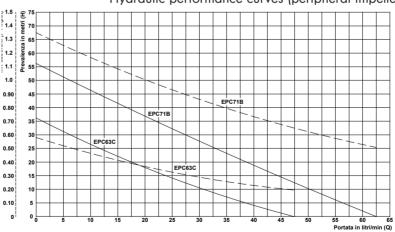

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

For different uses, please consult our Technical Office.

Size and weights table

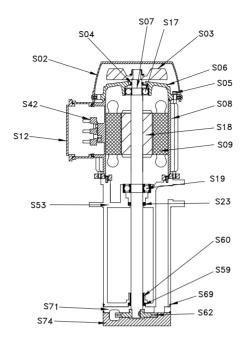
Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	310	100									8.9
EPC 63C	340	130				100	130			7 (n.4)	9.2
	390	180	210	3/4"	98			185	115		9.4
	440	230									9.6
	490	280									9.8
	570	360									10.3
	360	100					100	193	115	7	11.6
	390	130									11.9
EPC 71B	440	180	260	3/4"	98	100					12.1
EPC / IB	490	230	200	3/4	90	100	130			(n.4)	12.3
	540	280									12.5
	620	360									13.0



Rating plate data

	k\	W	V 230/	400 - Hz	Q - Qmax	п п		
Type of pump	Input	Nom.	In	n cos φ		Q - Qmax	Hmax - H	
, , , , , , , , , , , , , , , , , , ,	(P1)	(P2)	Amp.	min ⁻¹	,	litres/min	metres	
EPC 63C	0.50	0.37	1.60/0.92	2825	0.79	1 - 47	35 - 0	
EPC 71B	1.20	0.90	3.83/2.21	2760	0.78	1 - 62	55 - 0	

00.00


Hydraulic performance curves (peripheral impeller)

Hydraulic performance table (peripheral impeller)

Head in metres (H) →	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Type of pump		Flow rate in litres/min (Q) ↓													
EPC 63C	47	37	31	23	18	12	6	1							
EPC 71B	62	56	50	44	38	33	27	22	1 <i>7</i>	12	6	1			

Type EPC 63-71

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + Rotor
S19.	Lower bearing
S23.	Motor seal ring
S42.	Terminal board
S53.	Pump body
S59.	9
S60.	3
S62.	Impeller
S69.	O-ring
S71.	9
S74.	Feed screw

EPC 63C
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Cast Iron G20
NBR
Bronze
Brass 58
NBR
Cast Iron G20
Cast Iron G20

*On demand Sheet metal **On demand. Ax. AISI 416

EPC 71B
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Nylon
-
Steel**
-
NBR
-
Cast Iron G20
NBR
Bronze
Brass 58
NBR
Cast Iron G20
Cast Iron G20

*On demand Sheet metal **On demand. Ax. AISI 416

Type EPC 80-90

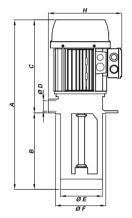
<u>Uses</u>

They are suitable for transferring clean liquids containing impurities up to 0.03 mm in size.

Their hydraulic components: impeller in brass, feed screw and pump body in cast-iron allow them to be used with emulsions and oily substances, glycol and liquids in general provded they are not oxidative for the construction materials. Viscosity must not exceed 21 cST (3° Engel). The temperature of the liquid must not exceed 90°C. They are commonly used on:

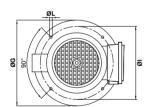
- drilling centres

- cooling units

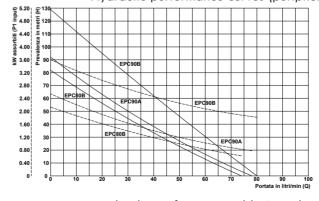

They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

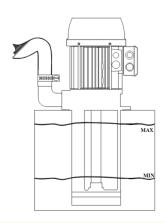
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

For different uses, please consult our Technical Office.

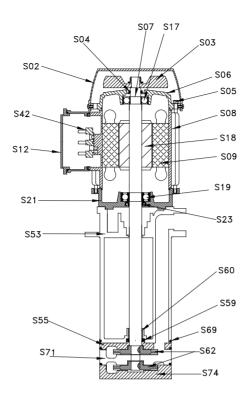

Size and weights table

Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
	381	100									15.3
	411	130								7	15.6
EPC 80B	461	180	281	3/4"	98	100	130	200	115		15.8
EPC OUB	511	230	201	3/4	70		130	200	113	(n.4)	16.0
	561	280									16.2
	641	360									16.8
	435	115		3/4"		100	130	220	115	7 (n.4)	17.2
	465	145	320								17.5
EPC 90A	515	195			98						17.7
EFC 70A	565	245									17.9
	615	295									18.1
	695	375									18.6
	460	140									30.3
	490	170									30.6
EPC 90B	540	220	320	3/4"	98	100	130	220	115	7	30.8
EPC 90B	590	270	320	3/4	70	100	130	220	115	(n.4)	31.0
	640	320								' '	31.2
	720	400									31.8




Rating plate data

		k'	W	V 230/	400 - Hz	Q - Qmax	Hmax - H	
Τν	pe of pump	Input	Nom.	ln	ln n			
′		(P1)	(P2)	Amp.	min ⁻¹	·	litres/min	metres
	EPC 80B	1.86	1.86 1.5		2845	0.83	9 - 74	70 - 0
	EPC 90A	2.28			2850	0.78	8 - 78	80 - 0
	EPC 90B	3.58	3	10.6/6.1	2855	0.84	5 - 80	120 - 0


Hydraulic performance curves (peripheral impeller)

Hydraulic performance table (peripheral impeller)

Head in metres (H) →	0	5	10	15	20	30	40	50	60	70	80	90	100	110	120
Type of pump		Flow rate in litres/min (Q) ↓													
EPC 80B	74	68	63	57	53	43	34	25	1 <i>7</i>	9					
EPC 90A	78	72	67	62	57	47	38	30	23	15	8				
EPC 90B	80	76	73	70	67	60	54	48	41	35	29	23	17	11	5

Spare parts nomenclature

		EPC 80B	EPC 90A	EPC 90B
	Component	Materials	Materials	Materials
S02.	Fan cover	Nylon*	Nylon*	Nylon*
S03.	Fan	Nylon	Nylon	Nylon
S04.	V-ring	NBR	NBR	NBR
	Stay rod	Steel	Steel	Steel
S06.	Upper shield	Aluminium	Aluminium	Aluminium
S07.	Balancing ring	Steel	Steel	Steel
S08.	Housing	Aluminium	Aluminium	Aluminium
S09.		-	-	-
S12.		Nylon	Nylon	Nylon
S17.	Upper bearing	-	-	-
\$18.	Axis + Rotor	Steel * *	Steel**	Steel**
\$19.	Lower bearing	-	-	-
	Flange	Aluminium	Aluminium	Aluminium
S23.	Motor seal ring	NBR	NBR	NBR
S42 .	Terminal board	-	-	-
S53.	Pump body	Cast Iron G20	Cast Iron G20	Cast Iron G20
\$55.	Diffuser	Not available	Aluminium (no 2)	Aluminium (no 2)
S59.	Feed screw seal ring	NBR	NBR	NBR
S60.	Bushing	Bronze	Bronze	Bronze
S62.	Impeller	Brass 58 (no 1)	Brass 58 (no 2)	Brass 58 (no 3)
S69.	Feed screw O-ring	NBR (no 2)	NBR (no 3)	NBR (no 4)
S71.	Adaptor coupling	Cast Iron G20	Cast Iron G20	Cast Iron G20
S74.	Feed screw	Cast Iron G20	Cast Iron G20	Cast Iron G20

^{*}On demand Sheet metal

^{*}On demand Sheet metal

^{*}On demand Sheet metal

^{*}On demand Ax.AISI 416

^{**}On demand Ax.AISI 416

^{**}On demand Ax.AISI 416

Type PPI

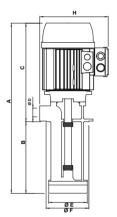
Uses

They are suitable for transferring liquids containing impurities up to 0.03 mm in size.

Their hydraulic components: impeller, feed screw and pump body in brass allow them to be used with emulsions and oily substances, glycol and liquids in general provided they are not oxidative for the construction materials. Viscosity must not exceed 21 cST (3° Engel).

The temperature of the liquid must not exceed 90°C.

When using diathermic oil, the fluid temperature can reach 150°C.

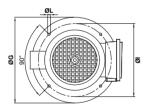

They are commonly used on:

- temperature regulation systems

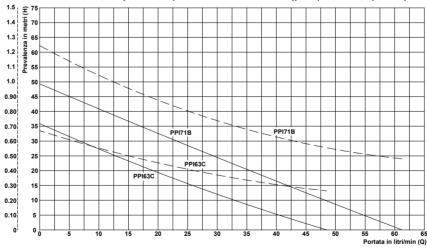
They are normally installed on a tank with a capacity which is proportional to their flow rate, about 3-4 cm from the bottom.

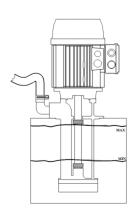
It is important to make sure that the maximum liquid level in the tank is always 3-4 cm lower than the support flange (see figure).

For different uses, please consult our Technical Office.



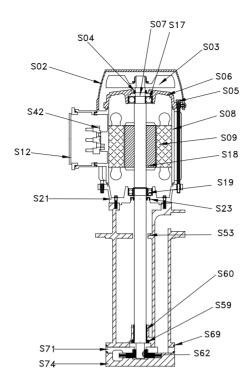
Size and weights table


Type of pump	Α	В	С	ØD	ØE	ØF	ØG	Н	ØI	ØL	Mass
Type of pullip	mm	mm	mm		mm	mm	mm	mm	mm	mm	kg
PPI 63C	437	195	242	3/4"	98	100	130	185	115	7 (n.4)	9.1
PPI 71B	466	200	266	3/4"	98	100	130	193	115	7 (n.4)	11.4


Rating plate data

	k'	W	V 230/	400 - Hz	Q - Qmax	Hmax - H		
Type of pump	Input	Input Nom.		ln n		Q - Qmax	Птах - П	
<i></i>	(P1)	(P2)	Amp.	min ⁻¹		litres/min	metres	
PPI 63C	0.74	0.74 0.55 2		2755	0.81	1 - 48	35 - 0	
PPI 71B	1.20	0.90	3.83/2.21	2760	0.78	5 - 61	45 - 0	

Hydraulic performance curves (peripheral impeller)



Hydraulic performance table (peripheral impeller)

		/		١				١١.	_ '						
Head in metres (H) →	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Type of pump		Flow rate in litres/min (Q) ↓													
PPI 63C	48	41	33	26	19	13	7	1							
PPI 71B	61	55	48	42	36	29	23	17	11	5					

Type PPI

Spare parts nomenclature

	Component
S02.	Fan cover
S03.	Fan
S04.	V-ring
S05.	Stay rod
S06.	Upper shield
S07.	Balancing ring
S08.	Housing
S09.	Wound stator
S12.	Terminal board cover
S17.	Upper bearing
S18.	Axis + Rotor
S19.	Lower bearing
S21.	Motor flange
S23 .	
S42.	Terminal board
S53.	/
S59.	Feed screw seal ring
S62.	Impeller
S60.	Self-lubricating bush
S69.	- 9
S71.	Adaptor coupling
S74.	Feed screw

PPI 63C
Materials
Nylon*
Nylon
NBR
Steel
Aluminium
Steel
Aluminium
-
Aluminium
-
(Ax.AISI 416)
-
Aluminium
NBR
-
Brass 58
NBR
Brass 58
AISI 304
NBR
Brass 58
Brass 58

^{*}On demand Sheet metal

^{*}On demand Sheet metal

Type HPP 80

Main application

The pump is designed for pumping clean and non-explosive liquids without abrasive and filamentous suspended parts and with a viscosity not exceeding 20mm²/s.

The pump is designed for industrial applications:

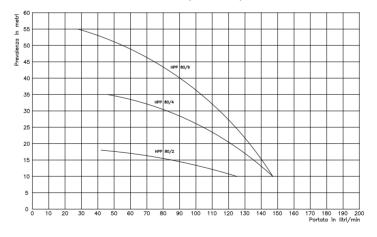
- Machine tools (grinding, lathes, drilling centres)
- Glass processing machinery
- Filtration systems
- Cooling systems
- Washing machines

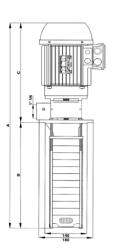
Operating conditions

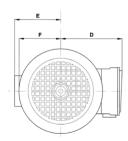
Liquid temperature from -15 ° C to + 90 ° C - Maximum room temperature + 40 ° C.

Electric motor:

The pump is equipped with a closed construction engine, with external ventilation, built in accordance with IEC 60034-30-1 in efficiency class IE3 (Premium Efficiency). Degree of protection IP 55


Size and weights table


Type of pump	A mm	B mm	C	D mm	E mm	F mm	Mass kg
HPP 80/2	535	192	343	123	99	80.5	15.5
HPP 80/4	589	246	343	123	99	80.5	18.0
HPP 80/6	643	300	343	123	99	80.5	20.5
•							


Rating plate data

T f	k۱	W		V 2	30/400	Hz 50			0 0	H - Hmax
Type of	Input Nom.		ln	n	cos φ		IE3 η		Qmax - Q	П - Птах
pump	(P1)	(P2)	Amp.	min ⁻¹	· ·	50%	75%	100%	litres/min	metres
HPP 80/2	0.91	0.75	2.84/1.64	2845	0.80	81.9	83.2	82.5	109 - 73	12 - 16
HPP 80/4	0.91	0.75	2.84/1.64	2845	0.80	81.9	83.2	82.5	125 - 82	14 - 30
HPP 80/6	1.30	1.1	4.09/2.36	2865	0.80	83.9	85.3	84.8	138 - 49	16 - 50

Hydraulic performance curves

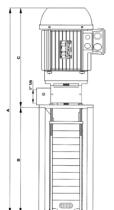
Head in metres (H) →	10	12	14	16	18	20	25	30	35	40	45	50	55	60
Type of pump		Flow rate in litres/min (Q) ↓												
HPP 80/2	125	109	98	73	42									
HPP 80/4	147	141	138	133	127	123	106	82	46					
HPP 80/6	147	144	141	138	136	133	124	115	104	89	75	49	28	

Type HPP 90

Main applications

The pump is designed for pumping clean and non-explosive liquids without abrasive and filamentous suspended parts and with a viscosity not exceeding 20mm²/s.

The pump is designed for industrial applications:

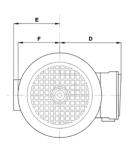

- Machine tools (grinding, lathes, drilling centres)
- Glass processing machinery
- Filtration systems
- Cooling systems
- Washing machines

Operating conditions

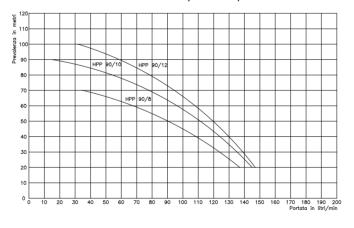
Liquid temperature from -15 $^{\circ}$ C to + 90 $^{\circ}$ C - Maximum room temperature + 40 $^{\circ}$ C.

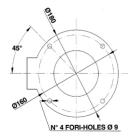
Electric motor:

The pump is equipped with a closed construction engine, with external ventilation, built in accordance with IEC 60034-30-1 in efficiency class IE3 (Premium Efficiency). Degree of protection IP 55



Size and weights table


Type of nump	Α	В	С	D	E	F	Mass
Type of pump	mm	mm	mm		mm	mm	kg
HPP 90/8	740	354	386	129	99	89.5	25.5
HPP 90/10	794	408	386	129	99	89.5	29.0
HPP 90/12	848	462	386	129	99	89.5	30.0


Rating plate data

	k'	W		V 2	0 0	H - Hmax				
Type of pump	Input	Nom.	ln	n	cosø		ΙΕ3 η		Qmax - Q	
<i>''</i> ' ' '	(P ['] 1)	(P2)	Amp.	min ⁻¹		50%	75%	100%	litres/min	metres
HPP 90/8	1.76	1.5	5.5/3.1	2900	0.82	82.3	84.7	84.8	137 - 66	20 - 60
HPP 90/10	2.61	2.2	7.8/4.5	2890	0.84	85.7	86.8	86.2	135 - 54	30 - 80
HPP 90/12	2.61	2.2	7.8/4.5	2890	0.84	85.7	86.8	86.2	130 - 32	40 - 100

Hydraulic performance curves

			riyuru	one bei	IOIIIIGI	ice iui	DIE				
Head in metres (H) →	20	30	40	50	60	70	80	90	100	110	120
Type of pump				Flo	w rate in	litres/r	nin (Q)	\downarrow			
HPP 90/8	13 <i>7</i>	123	108	90	66	35					
HPP 90/10	145	135	125	111	98	78	54	15			
HPP 90/12	147	140	130	116	112	95	79	57	32		

Type HPP 100

Main applications

The pump is designed for pumping clean and non-explosive liquids without abrasive and filamentous suspended parts and with a viscosity not exceeding 20mm²/s.

The pump is designed for industrial applications:

- Machine tools (grinding, lathes, drilling centres)
- Glass processing machinery
- Filtration systems
- Cooling systems
- Washing machines

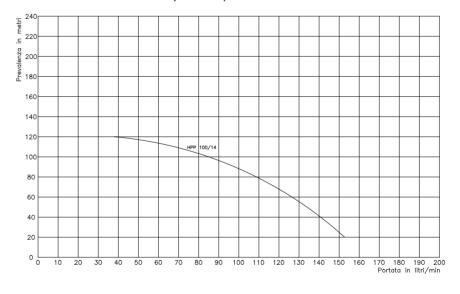
Operating conditions

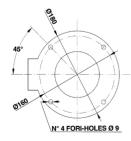
Liquid temperature from -15 ° C to + 90 ° C - Maximum room temperature + 40 ° C.

Electric motor:

The pump is equipped with a closed construction engine, with external ventilation, built in accordance with IEC 60034-30-1 in efficiency class IE3 (Premium Efficiency). Degree of protection IP 55

Size and weights table


Type of pump	Α	В	С	D	Е	F	Mass
Type of pollip	mm	mm	mm		mm	mm	kg
HPP 100/14	934	516	418	144	99	97.5	34.5


Rating plate data

		k'	W	V 230/400 - Hz 50						0 0	H-H _{max}
Type of	oump	Input	Nom.	In	n	cos ϕ		IE3 η		Qmax-Q	П-Птах
′' '		(P1)	(P2)	Amp.	min ⁻¹	· ·	50%	75%	100%	litres/min	metres
HPP 100)/14	3.41	3	9.8/5.7	2900	0.87	88.8	89.2	88.3	134 - 38	50 - 120

F D

Hydraulic performance curves

Head in metres (H) →	20	30	40	50	60	70	80	90	100	110	120	130	140
Type of pump		Flow rate in litres/min (Q) ↓											
HPP 100/14	152	147	141	134	126	118	109	98	84	68	38		

Type HPP 112

Main application

The pump is designed for pumping clean and non-explosive liquids without abrasive and filamentous suspended parts and with a viscosity not exceeding 20mm²/s.

The pump is designed for industrial applications:

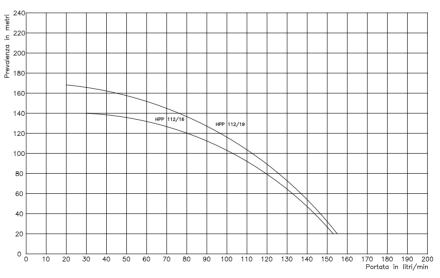
- Machine tools (grinding, lathes, drilling centres)
- Glass processing machinery
- Filtration systems
- cooling systems
- Washing machines

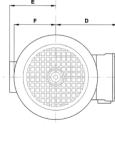
Operating conditions

Liquid temperature from -15 ° C to + 90 ° C - Maximum room temperature + 40 ° C.

Electric motor:

The pump is equipped with a closed construction engine, with external ventilation, built in accordance with IEC 60034-30-1 in efficiency class IE3 (Premium Efficiency). Degree of protection IP 55


Size and weights table


Type of pump	nm	mm	mm		mm	mm	kg
HPP 112/16	010	570	440	163	99	115	44.0
HPP 112/19 10	091	651	440	163	99	115	45.4

Rating plate data

	0 1										
		k'	W		V 2	230/400	- Hz 50)		0 0	H-Hmax
	Type of pump	Input	Nom.	ln	n	cosф		IE3 η		Q _{max} -Q	П-Птах
	<i>"</i>	(P1)	(P2)	Amp.	min ⁻¹		50%	75%	100%	litres/min	metres
ŀ	HPP 112/16	4.43	4	12.6/7.3	2920	0.88	86.6	88.4	88.6	134 - 30	60 - 140
ŀ	IPP 112/19	4.43	4	12.6/7.3	2920	0.88	86.6	88.4	88.6	130 - 25	<i>7</i> 0 - 160

Hydraulic performance curves

Head in metres (H) →	30	40	50	60	70	80	90	100	120	140	160	180
Type of pump					Flow r	ate in lit	res/min	(Q) ↓				
HPP 112/16	149	145	140	134	126	120	110	103	80	30		
HPP 112/19	151	148	142	136	132	125	119	113	99	<i>7</i> 8	43	

Use and maintenance

Via A. Pacinotti n. 2 - 30020 NOVENTA DI PIAVE (Ve) Italy- - Phone no.: +39-0421-307389 telefax no.: +39-0421-65428 email: info@sacemi.com

OPERATION AND MAINTENANCE MANUAL (ORIGINAL INSTRUCTIONS) - MOTOR-DRIVEN PUMPS ** SACEMI

GENERAL INFORMATION

This manual is designed to provide a general understanding of the machine and the instructions necessary for its proper installation and operation.

The manual is an integral part of the machine and must be read carefully before handling, installing and operating the machine and it must be kept for future reference.

Non-observance of the instructions in this manual, any improper use, any maintenance not carried out by specialised personnel, removal of labels and warnings of any kind, removal or tampering of protective guards and/or safety devices and any other action not expressly envisaged which may modify the solutions adopted by the Manufacturer concerning the safety of the machine or of its parts, can cause serious injury to persons and property and will relieve the Manufacturer of any responsibility. Any intervention on the machine by unauthorised personnel will result in the automatic termination of the product warranty.

The product identification number (Type) and its characteristics and a code for traceability of the date and batch of production are stamped on the nameplate of the motor-driven pump: the model information and warnings contained in this manual refer to the identifiable marks written on the nameplate.

As regards any situations not covered by this manual or any further information, please refer to our general catalogue and to the documentation available on www.sacemi.com and if required contact our commercial service

DECLARATION OF CONFORMITY:

The motor-driven pumps **SACEMI type AP-AU-EPC-HPP-IMM-MP-MPC-PPI-SP-SPV-SQ-TR comply with the requirements of Directives 2006/42/EC (Machinery) - 2006/95/EC (Low Voltage) - and -2004/108/EC (CEM). They bear the conformity marking on the plate CE. Some catalogue versions and products meet the requirements laid down in EN 12157 Coolant pump units for machine tools - Nominal flow rate, dimensions (see tables at the end of the manual)

PRODUCT DESCRIPTION:

Motor-driven centrifugal pumps **SACEMI are designed for the circulation of liquids in general and of cooling mixtures, according to the specific uses indicated in the tables that end this manual. The impellers are fastened directly to the extended crankshaft

The pump is equipped with a 2-pole electric motor, designed for continuous service and power supply, built according to IEC60034, cooled with external ventilation, class F winding and IP 55 protection

WARNING MAINTENANCE / STORAGE OF THE MACHINE:

Temporary storage of the machine must be carried out inside its original packing, carefully placing the package in a stable position, in a clean and weather-protected environment which can protect the pump from foreign bodies accessing and from weathering (rain, snow, etc.) that may cause damage to its electrical parts. The storage environment temperature must be between -20 ° C and +50 ° C.

Motor-driven pumps must be handled with the utmost care and with means appropriate to their size and weight (which can be detected from the plate on the machine or from the table at the end of the manual). In particular, packed pumps must be moved in accordance with the instructions on the package, in particular avoiding standing elongated containers on their smaller side in order to avoid any roll-over of the package. During handling and transport, be careful not to damage the delicate parts. When handling non-packed pumps listed in the catalogue other than AU-TR-SQ, only harness or pick

up the machinery at its gripping points using suitable hooks or ropes, as shown in table no 4. While handling the pumps there is a risk of injury; therefore, it is necessary to use suitable lifting devices appropriate to the weight and size of the pump together with personal protection equipment. The handling of the pump by lifting means must always take place slowly, with no uncontrolled oscillations in order to avoid unbalance and slippage. **DO NOT** pick up or harness the pump near the shaft: it could be damaged. **DO NOT** place the pump on the ground by leaning it on the impeller's base as it may overturn. When resting it on the ground temporarily, the pump must be placed horizontally, ensuring that thickening elements are placed under its ends to prevent it from tilting against the flange support or from rolling thereby damaging the housing of the electrical wiring terminal boards. Models AU-TR-SQ must be lifted by using a harness around the narrow neck-shaped groove between the motor body and the pump and their temporary resting on the ground must be positioned: AU pumps on their supporting tapered ring, TR-SQ ones with their motor axis horizontal, ensuring thickening elements are placed under the ends to prevent it from tilting against the flange support or from rolling thereby damaging the housing of the electrical wiring terminal boards. **DO NOT** place the pump temporarily on the ground at its engine crank rear end When handling, every care must be taken to prevent foreign bodies from entering through the engine ventilation grilles, the suction holes and the pump delivery holes.

Motor-driven pumps **SACEMI* are particularly used in the industrial field on machine tools for machining metal, plastic, glass, stones (cutting, drilling, milling, grinding, turning) and industrial applications for filtration, fluid temperature control, spray booths, surface treatment, printing machines.

The expected application for each model is specified in *table no 5*.

Motor-driven pumps must NOT be used in explosive and / or potentially explosive environments and must NOT be used with flammable liquids or which produce harmful and/or explosive gases. For possible uses with aggressive liquids (e.g. acids, alkali solutions) please refer to the indications given for each type of pump in our Catalogue or on our website www.sacemi.com

Pumps must NOT be used for heads below the lowest point of the characteristic curve shown in the catalogue as the use of the pump for heads lower than these may overload the motor. Motor-driven pumps **must NOT** be used in tanks under pressure and the installer is therefore responsible for providing the necessary technical arrangements to prevent the tank from being, even temporarily, pressurised. The pumped liquid **must NOT** exceed a viscosity of 21 cSt (3°E) and a temperature of 70°C. The maximum permissible sizes of the solid parts allowed in the pumped fluid vary for each type of pump as indicated in the tables at the end of the manual.

The motor-driven pump is built to be installed in an indoor environment or in areas protected from the weather. The electrical data indicated on the plate must be observed for continuous service work.

To lift the pump, use equipment and accessories as indicated in the "Handling" section.

To avoid leakage and ensure the maximum flow, please use pipes with diameters equal to the pump delivery hole

DO NOT use rigid couplings between pump delivery and plant (except for the envisaged types)

Ensure the pump is perfectly primed before turning it on.

Ensure there are no obstructions preventing the normal cooling air flow to the engine fan.

Motor-driven pumps must be secured to avoid vibrations or movements which could damage the piping.

DO NOT insert your fingers in the intake duct for any reason as there is a risk of injury by touching the impeller.

The installer is responsible for making sure that all technical and plant precautions are put into place and maintained in the specific installation in order to ensure that the mechanical and hydraulic requirements listed below for each type are complied with.

The pump must be installed on the top of the tank and secured with appropriate bolts / screws. For proper operation of the pump and to ensure its correct sealing, the pump must be primed before use; the priming operation must be repeated whenever the pump sucks air due to a lack of liquid. The pump must NOT run in the absence of liquid.

Rev. 02/2017 70

SQ Type Pumps:

The SQ type pump must be installed on a side wall of the tank.

The pump must be secured to the tank with appropriate screws, placing a seal between the tank surface and the suction inlet of the pump.

The pump must NOT run in the absence of liquid.

For proper operation of the pump and to ensure its correct sealing, it is essential to comply with the minimum level of liquid in the tank. (table no 2)

TR Type Pumps:

To ensure greater stability to the TR type pump, use rigid suction and delivery pipes.

The pump must NOT run in the absence of liquid.

For proper operation of the pump and to ensure its correct sealing, it is essential that the machinery is positioned under a constant head. (table no 2)

AP-EPC-HPP-IMM-MP-MPC-PPI-SP-SPV type pumps:

The pump must be installed by fixing the coupling flange to the top of the tank and the pump body immersed in the liquid.

Use the appropriate screws to anchor the flange to the tank.

The maximum liquid level in the tank must always be 3-4 cm below the support flange, while the minimum level must always be above the suction chamber (table 2). The suction hole is located on the bottom of the pump body. The minimum distance between the intake hole and the bottom of the tank must be calculated in order to avoid cavitation and to prevent impurities from leaking into the fluid flow.

- When installing pumps with a plastic body, please:

 Do NOT use rigid fittings and / or conical threaded connections;
- only use liquid or very thin sealants (film);
- be careful when screwing the coupling to the pump delivery, not to force it beyond the stop positioned inside the pipe coupling and, in any case, not to apply a clamping force above 40 kgm (390 Nm)

Failure to observe these warnings can irreparably damage the pump delivery hole.

The motor-driven pump is designed for a permanent electrical connection other than a plug.

The wiring must be carried out by qualified personnel, in accordance with the regulations in force in the country of use and must always provide for the grounding of the machine.

The motor voltage and frequency must comply with those indicated on the rating plate.

The arrangement of the connecting bridges " or \(\Delta''\) must correspond to the wiring diagram inside the terminal board cover. (**table no 3**)

Check that the direction of rotation of the pump is the one indicated by the arrow on the pump body. Should the rotation direction be incorrect, stop the motor, disconnect the power line and reverse two phases of the power supply. Always check that the current absorbed by the pump during operation is never higher than the rating indicated on the plate.

We recommend the use of cables and plugs with the appropriate section for the currents absorbed by the electric motor that equips the machine; please remember that the absorbed current when turning the pump on can be much higher than those indicated on the plate.

As the standard construction of the motor-driven pump does not include any overload protection, the installer must provide a separate and adequate protection.

Make sure that fuses, circuit breakers and thermal relays are properly dimensioned.

Direction of rotation of the motor:

As regards AP-AU-EPC-IMM-MP-MPC-PPI-SP-SPV-SQ-TR pumps, if you look at the motor's fan cover from above, the cooling fan must turn to the right (clockwise). As regards HPP pumps, if you look at the motor's fan cover from above, the cooling fan must turn to the left (anticlockwise)

INSTRUCTIONS FOR USE:

The machine must always be positioned with the motor axis in a vertical position in order to work correctly. The working environment temperature must be between -20 ° C and +40 ° C.

Although the pumps are designed to tolerate the presence of impurities contained in liquids (with the quantities indicated in *table no 1*), it is still recommended to prepare appropriate decanting zones (e.g. dividing the tank into compartments), in compliance with the installation rules. As regards self-priming pumps, an initial trigger must be provided by filling the suction or delivery pipe.

Should there be a leakage of liquid from the inlet of the axle into the suction / discharge chamber in pumps equipped with a mechanical seal, stop the machine and check the damaged part. In the event of electrical failure on a machine equipped with a single-phase motor, the operator must pay attention to possible electrostatic phenomena due to the capacitor.

The outer casing of the motor can reach 70°C; thus, it is advisable, for prolonged operations on this surface, to use appropriate protections (gloves).

For the Lp acoustic pressure level see table no 1.

The pump does not require any special scheduled maintenance work in addition to the necessary periodic cleaning of the impeller and of the feed screw from the impurities present in the liquid. To replace bearings, mechanical seals and/or components of the electric motor, refer to the technical data sheets in our general catalogue and to the documentation available on the website www.sacemi. com or contact our commercial service.

All maintenance operations must be carried out by qualified personnel, with the machine not running and disconnected from the mains.

DECOMMISSIONING OF THE MACHINE AND WASTE DISPOSAL:

The decommissioning of the motor-driven pump must be carried out by competent personnel who must safely remove the electrical, hydraulic and mechanical connections in that order, making the installation completely inoperative and secure (e.g. protect/close the lights in the empty tank). Finally, dismantling must be carried out in appropriate structures, in full compliance with the applicable laws of the user's country concerning waste disposal and separate collection, bearing in mind the materials forming the pump as detailed in table no 1.

Symbols used / terminology

WARNING	Warning	Ŷ	General danger	Í	Electrical shock hazard
It warns that failure to risk of damage to the	comply with the prescriptions involves a machine	It warns th and/or thi	at non-observance entails a risk of harming people ngs	It warns of shock	the presence of high voltage with the risk of electric

Table no 1	Technical features

Type of pump	Main components	Impurities allowed	I	ight cg	Lp (db)	
			Ra	nge	,/	
AP 80B	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤2	37	48	<70	
AP 90A	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤2	41	51	73	
AP 90B	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤2	43	53	75	
AP 100A	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤2	48	58	78	
AP 112B	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤2	59	71	76	
AU	Steel - Aluminium - Cast Iron - Plastics - Brass - Copper - Paints	≤ 0.03	4	6	<70	
EPC 63-71-80	Steel - Aluminium - Cast Iron - Plastics - Brass - Copper - Paints	≤ 0.03	8	18	<70	
EPC 90	Steel - Aluminium - Cast Iron - Plastics - Brass - Copper - Paints	≤ 0.03	30	32	<70	
PPI 63-71	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 0.03	9	12	<70	
HPP 80	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 1	15	21	<70	
HPP 90	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 1	25	30	<70	
HPP 100-112	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 1	34	46	78	
IMM 40-50	Steel - Aluminium - Plastics - Copper - Paints	≤ 3	1	2	<70	
IMM 63	Steel - Aluminium - Plastics - Copper - Paints	≤ 3	5	6	<70	
IMM 71	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 3	9	12	<70	
IMM 80	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 3	14	19	<70	
IMM 90A	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 4	47	50	73	
IMM 90 B	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 4	49	52	75	
IMM 100	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 4	53	56	78	
MP 63-71	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 3	6	11	<70	
MP 80-90	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 3	16	24	<70	
MP 100	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤ 3	32	36	<70	
MPC 80	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤2	15	19	<70	
MPC 90	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤2	25	29	<70	
MPC 100	Steel - Aluminium - Plastics - Brass - Copper - Paints	≤2	38	43	<70	
MSPV 100	Steel - Aluminium - Plastics - Copper - Paints	≤ 3	9	14	<70	
SP 12-18-25-33	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 3	5	9	<70	
SP 50-75-100-150	Steel - Aluminium - Cast Iron - Plastics - Copper - Paints	≤ 3	13	22	<70	
SPV 12-18-25-33	Steel - Aluminium - Plastics - Copper - Paints	≤ 3	2	6	<70	
SPV 50-75-100-150	Steel - Aluminium - Plastics - Copper - Paints	≤ 3	7	15	<70	
SQ	Steel - Aluminium - Plastics - Cast Iron - Brass - Copper - Paints	≤ 3	3	18	<70	
TR	Steel - Aluminium - Plastics - Cast Iron - Brass - Copper - Paints	≤ 3	12	15	<70	
HPP 80	Steel - Aluminium - Plastics - Cast Iron - Copper - Paints	0	15	21	<70	
HPP 90	Steel - Aluminium - Plastics - Cast Iron - Copper - Paints	0	25	30	<70	
HPP 100	Steel - Aluminium - Plastics - Cast Iron - Copper - Paints	0	3	30	<70	
HPP 112	Steel - Aluminium - Plastics - Cast Iron - Copper - Paints	0	44	46	<70	

Table no 2	Motor wiring
------------	--------------

Terminals of the terminal board Terminal boards - Plaque à bornes	Connection λ	Connection Λ		
W2 U2 V2	© © © W2 V2	W2 QU V2		
O O O	01 V1 W1	U1		
	L1 L2 L3	L1 L2 L3		

Table no 5	Table showing possible uses
------------	-----------------------------

Туре	Uses	Type of fluid
IMM 40	Cutting - drilling	Oil-oily emulsions
IMM 50 A	Cutting - drilling - milling - conditioning	Oil-oily emulsions
IMM 63-71-80	Turning - filtration - milling - grinding - glass processing	Oil-oily emulsions
IMM 90-100	Turning - filtration - grinding - spray booths	Oil - oily emulsions - paint water
SPV 12-18	Cutting - drilling - milling - conditioning - glass processing	Oil-oily emulsions
SPV 25-33-50-75-100-150	Cutting - drilling - milling - printing - glass processing	Oil-oily emulsions - glycol
SP 12-18	Milling - turning - drilling	Oil-oily emulsions
SP 25-33-50-75-100-150	Milling - turning - drilling - grinding – filtration	Oil-oily emulsions
AU 56-63	Recirculation- suction	Oil-oily emulsions
71 - 80	Recirculation- transfer	Oil - oily emulsions - alkaline solutions
SQ 56-63-71-80	Milling - turning - drilling - surface treatment	Oil - oily emulsions - alkaline solutions
AP 80-90-100-112	Turning - filtration - grinding - surface treatment	Oil - oily emulsions - alkaline solutions
MP 63-71-80-90-100	Turning - filtration - grinding	Oil-oily emulsions
MPC 80-90-100	Turning - filtration - grinding	Oil-oily emulsions
EPC 63-71-80-90	Deep-hole-drilling-cooling	Oil-oily emulsions - glycol
PPI 63 - 71	Thermoregulation	Diathermic oil

TROUBLESHOOTING GUIDELINES

Flaw detected	Possible causes	Possible solution
The engine does not start - No noise	- flaw in motor terminal box connections - flaw in the power supply wiring	Check the motor terminal board connections Check the power line Check all switches, fuses and thermal protectors
The engine does not start - Humming perception	- motor failure due to no winding - power line flaw due to phase failure - blocked impeller - blocked bearing - blocked bushing - blocked seal	- Check the motor terminal board connections - Check motor winding - Check the power line - Replace the impeller - Replace bearing - Replace bushing - Replace seal
		•
The motor runs, but there is no liquid flowing	- the liquid level in the tank is below the minimum required - the impeller is damaged and/or occluded - suction hole occluded - delivery pipe is closed	Top up the minimum level of liquid in the tank Clean the impeller and replace it if damaged Clean suction hole Clean the suction and pumping chamber Clean the delivery pipe
		,,,
Insufficient pressure and flow	- wrong motor rotation direction - impeller, suction chamber, delivery pipe clogged with impurities - the impeller is damaged - suction chamber, pumping chamber are damaged	Restore the correct rotation direction of the motor Clean the impeller, the suction chamber and delivery pipe Replace the impeller Replace the delivery pipe, the suction and pumping chambers
Motor power absorption is too high	- too many impurities - friction between moving parts - liquid density beyond the limits of use	- Remove impurities other than those allowed - Identify and replace defective components - Restore liquid density within the limits of use

CUL/US ADDITIONAL INFORMATION

WARNINGS:

- The installer must provide motor protection against overloads.
- The installer must protect the pump to avoid it being used with no liquid.
- <u>Electric shock hazard</u> This pump has not been evaluated for use in swimming pools and / or equivalent environments.
- Motors designed for dual voltage operation indicate the electrical data for which they have been factory-set.

CAUTION:

• These pumps have been evaluated only to be used with water.

SACEMI GAMAR SRL