Contents **Technical appendix**

Drum and Container pumps 3
Medium table Eccentric screw pump 20
Explanation of physical variables 21
Basics of explosion protection 24
Motorspecifications of Lutz universal motors
The optimal pump tube for your case of application
Assembly of the Lutz pump tubes 29
Dimension drawing Drum and contaienr pumps 30
Dimension table Drum and container pumps 31
Dimension drawing Container pump B50
Dimension drawing Eccentric screw pump HD-E 32
Dimension drawing Eccentric screw pump B70V 12.1-50.1 (Three-phase)
Dimension drawing Eccentric screw pumps B70V 80.1-120.1
Dimension drawing Eccentric screw pump B70V-SR 12.1-50.1

Dimension drawing Eccentric screw pump B70V 12.1-50.1 (compressed air) 34	
Dimension drawing Flange connection Eccentric screw pump B70V	
Dimensions compressed air motor for eccentric screw pump B70V 35	
Dimensions Lutz pump tubes	
Dimensions for Lutz drive motors	

Dimension drawings flow mater	20
Dimension drawings flow meter	38
Dimension drawings flow meter	
with relay module	39

Documentation from Lutz	37
Dimensions and weights for packing	40
Questionnaire Pump and container pumps	42
Questionnaire	13

Finding your way around the Lutz chemical resistance table

1. General

reasonably concise information about the in alphabetical order. Formulas of chemical chemical resistance characteristics of the different types of pump tubes and flow meters to simplification. Where known and meaningful, various media. The materials coming into the table also lists the concentration, density, contact with the liquids which are employed in the pump tubes have been tested with regard to their chemical resistances and assessed for use at room temperature.

The chemical resistance table is intended as a guide to the suitability of each pump tube; it also specifies any materials which are wholly unsuitable for certain concrete applications. Please do not hesitate to consult us directly if you are unable to find the most suitable material that some of the materials employed in our for your pump tube.

reservations exist regarding the use of a same time we are constantly endeavouring to particular combination of materials, we strongly recommend trying out the equipment under operating conditions. We can provide samples of various materials on request. It should be remembered that discolouring on the surface. minor increases in the weight and/or volume and changes to the mechanical properties (strain characteristics, strength properties, etc.) do not necessarily affect functioning to a material.

Since corrosion is influenced by a variety of factors, the information contained in the table cannot necessarily be applied to all operating conditions. Corrosion may be accelerated by temperature increases, by medium concentrations or by the entry of water into media which are otherwise pure. Discrepancies regarding the long-term resistance of plastics and elastomers are also possible, depending on the amount of impurities in the medium as well as on the compounding and degree of vulcanisation of the sealing materials.

The table specifications are based on the assumption that no other mechanical forces are effective.

2. How to use the table

This chemical resistance table contains The corrosive media are arranged in the table compounds are included for the purposes of temperature classes, danger classes and explosion groups of the media.

The table is an extremely reliable guide to the behaviour of corrosive media at room temperature, since a large part of the information it contains was only available for a temperature of 20 °C. In view of the continuing advances in the field of plastics, extensive suitability tests may reveal pumps can be substituted or that others which are not mentioned can in fact be used. New In cases where the resistance characteristics materials are therefore likely to be added to cannot be verified, or where any other the table at some stage in the future. At the eliminate any gaps in our information.

> All the information in the chemical resistance table is based on empirical values supplied by industry and on the results of tests performed in our own laboratories.

The resistance data specified for the individual products do not provide any entitlement to sufficient extent to preclude the use of a make warranty claims, since it is merely intended to serve as a recommendation for practical applications.

> You can make your product choice more reliable by taking account of your own experience with regard to the resistance of particular materials to aggressive media.

Special attention should be paid to the guidelines concerning flammable liquids.

Explanation column pump set:

In this column you find the appropriate recommendations regarding our Lutz pump sets. The numbering has thereby the following meaning:

...Pumn set no." without addition means general suitability of the set for the selected medium.

...Pumn set no. 1" means concitional suitability of the set for the selected medium. With this set danger of discoloration and/or embrittlement in dependence of the short working period may occur on the PVC-hose.

Meaning of symbols and notes:

= Little or no corrosion, resistant

 = Conditional stable (danger of) discoloration and for embrittlement in dependence of the short working period)

= Special seal EPDM

= Special seal Viton-FEP

= Special friction bearing Rulon

= Measuring chamber for Nitric Acid

6 = On demand

pure = technical pure

sat. = saturated

All reprints, transcripts and copies of this publication, either in part or in full, require the prior written agreement of Lutz.

												Lutz - Pı	ımp Tube				Τ		Lutz -	- Flow Mete	er				Hoses					Nozzle	s			Oth	
Cł	nemical Resist	ance Table						PP		B50	PVE)F	Alu		SS	HC		TR	ST	SL LI	M UN	VA	<u> </u>			—							- 1	Access	ories
Lutz	Drum and Container	numps. Flow meter																								8									
		pops/ 1.0	%	kg/dm³		4			울					1	Ŕ											ical hose	hose						0		
Ace	taldehyde – B itter Sa	lt	l Concentration in	ty kg/		F-F	SM-		PP-SL-HC	dwnd				1	ĕ l			H	aFe	ي	p			hose	, g	hemic	chemical hose	PP/FPM PVDF/FPM	/s	SS/FPM	ALU/NBR	Nozzle	Nozzle	ectors	nectors
	-		ntrati	gravity	Suitable	PP-MS-SS, I	MS, MP-PF PP-MS-HC	SS-	SL,	iner p	-WS	-SI	<u>.</u>	S	SS-SL	S-MS	A de de	O PVDF	PPO/SAN/BaFi	PPO/PPS	90 do	S	lose	Mineraloil	Solvent hose	ızal c	al che	Nozzle PP/FPM	Brass/	SS/I	a ALU	natic PM	PDN	conn	9
No.	Medium	Formula	Conce	Spec.	Pump set No.	PP-M	MS, N	PP-SL-SS	B2-PP-SL,	Container B50 PP	PVDF-MS	PVDF-SL	Alu-Si	SW-SS	SS-SI	MP-SS HC-SL	TR 50 P	TR 120	PP0/8	PPO/PPS	PPS/LCP	SS/PPS	PVC-Hose	Miner	Solve	Universal	Special	Nozzle	Nozzle	Nozzle	Nozzle	Automatic ALU/FPM	ALU/E	Hose	Hose Brass
1	Acetaldehyde	CH₃CHO	40			(2			0	-	2		2 (0 0	_	-		- (_		_	_		0	2 2		_			0	0	0
2	Acetaldehyde	CH₃CHO	pure	0.79	Ex 8, 10	-		-	-	-	-					0 0		_	_	- 0			_	_	-		0				-	_	0	0	0
3	Acetamide	CH3CONH2	pure	0.98	5			0	0	0	0	0				0 0			-	0 -			-	-	-		ŏ	0		ŏ		-	-	ŏ	-
4	Acetic Acid	CH₃COOH	10		3	(2			0	2	2	0		2		0 0		-	-	3 -	- 0		0	-	-	0	0	2 2		2		-	-	0	-
5	Acetic Acid	CH₃COOH	25		3	(2			0	2	2	0		2	0	0 0	-	-	-	3 -	- 0	0	0	-	-	0	0	2 2	9 -	2	-	-	-	0	-
6	Acetic Acid	CH₃COOH	50		3.1	0	2	0	0	2	2	0		2	0	0 0	-	-	-	3 -	- 0	0	0	-	-	0	0	2 2	9 -	2	-	-	-	0	-
7	Acetic Acid	CH₃COOH	80		-	-	- -	0	0	2	-	0	- -	6	_	0 0		-	-	3 -	- 0		-	-	-	0	0	3 3	3 -	3	-	-	-	0	-
8	Acetic Acid	CH₃COOH	100		Ex 8, 10	-	- -	-	-	-	-	-	- -			0 0		-	-		- 0		-	-	-	0	0	- -	- -	3	-	-	-	0	-
9	Acetic Anhydride	(CH ₃ CO) ₂ O	pure		Ex 8, 10	-	- -	-	-	-	-	-		2		0 0		-	-		- 0	-	-	-	-	0	0		-	2	-	-	-	0	-
10	Acetic Ester	CH3COOC2H5	100	1.03	-	-	- -	-	-	-	-	-	- 0	6	-	0 0		-	-	- -		0	-	-	-	0	0	- -	- 0		-	-	-	0	0
11	Acetic Methyl Ester	CH3COOCH3	100	0.93	Ex 8, 10 Ex 8, 10	-	-	-	-	-	-	-	- -	6		0 0		-	-		- 0	0	-	-	-	0	0	- -	- -	3	-	-	0	2	-
12 13	Acetone Acetone	CH₃COCH₃ CH₃COCH₃	pure	0.79	Ex 8, 10									2	_	0 0				- (_		_		0	0		- 0				0	0	0
14	Acetonitrile	CH3CN	pure		Ex 8, 10			1 -		- 1	_			6		0 0		-	_	-		10		_	_	0	0			3	-		-	0	-
15	Acrylonitrile	CH₂CHCN	pure		Ex 8, 10		. -	-	-	-	-	-		-		0 0		-	-		ó	-	-	-	-	ŏ	ŏ		- 0		-	- 1	-	ŏ	0
16	Adipic Acid	HOOC(CH ₂) ₄ COOH	sat.	1.36	1, 2, 3, 4, 5,	6 (0	0	0	0	0	0	0	ŏ		0 0		0	0	0			0	0	0	Ŏ	Ŏ	0 0			0	0	0	Ŏ	Ŏ
17	Allyl Alcohol	H ₂ C=CHCH ₂ OH	96		Ex 8, 10	-		-	-	-	-	-				0 0		-	-		- 0	_	-	Õ	Õ	Õ	Õ			3	-	-	-	Õ	- 1
18	Alum	KAI(SO ₄) ₂ X ₁₂ H ₂ O	50		1, 2, 3, 4, 5,	6	0	0	0	0	0	0	0			0 0		0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0
19	Aluminium Chloride	AICI ₃	10		1, 2, 4, 5	-	- 0		0	0	0	0		-	-	- 0	0	0	-	0 -	- 0	-	0	-	-	0	0	0) -	-	-	-	-	-	-
20	Aluminium Chloride	AICI ₃	sat.		1, 2, 4, 5	-	- 0		0	0	0	0		-	-	- O	0	0	-	0 -	- 0	-	0	-	-	0	0	0) -	-	-	-	-	-	-
21	Aluminium Nitrate	AI(NO3)3	sat.		1, 2, 3, 4, 5				0	0	0	0				0 0			-	0 -	- 0		0	-	-	0	0	0) -	0	-	-	-	0	-
22	Aluminium Sulfate	Al ₂ (SO ₄) ₃	10		1, 2, 3, 4, 5				0	0	0	0	- -			0 0			0	0 -	- 0	_	0	-	-	0	0	0 0	^ I	0		-	-	0	-
23	Aluminium Sulfate	Al ₂ (SO ₄) ₃	sat.	1.61	1, 2, 3, 4, 5				O	0	0	O	- -			0 0			0	0 -			0	-	-	0	0	0	-	0		-	-	0	-
24	Ammonia	NH3	sat.	0.61	3	(2)			0	2	2	0	- -			0 0		-	-	2 -		2	0	-	-	0	0	2 2	_	2	6	6	6	6	6
25	Ammonium Acetate	CH ₃ COONH ₄			3	0			0	2	2		2			0 0		-	3		0		0	-	-	0	0	2 2			-	-	0	0	0
26	Ammonium Carbonate Ammonium Chloride	(NH ₄) ₂ CO ₃	- ant	1.07	3 1, 2, 4, 5	(2	② - O		0	2	2		2 0	2	0	0 0	_	-	3	3 -	0	0	0	-	-	0	0	② ② ②	-	2	-	-	0	0	0
27 28	Ammonium Fluoride	NH₄CI NH₄F	sat.	1.07	1, 2, 4, 5	-	- 0		0	0	0	0	- -	-	-	- 0			_		- 0	-		-	-	0	0	0		-	-	-	-	-	_
29	Ammonium Fluorosilicate	(NH ₄) ₂ SiF ₆	pure			(2			0	0	@		2	2	0	0 0	_	-	3	3 (_	- 1	0	0	② @	-	2	-		0	0	0
30	Ammonium Nitrate	NH ₄ NO ₃	10		1, 2, 3, 4, 5				o	ŏ	ŏ	0	_ -			0 0		0	ŏ	ŏ -	- 0		0	_	_	ŏ	0	Ö		ŏ	-	_	-	0	-
31	Ammonium Nitrate	NH ₄ NO ₃	50	1.23	1, 2, 3, 4, 5				ŏ	ŏ	ŏ	ŏ	_ -			0 0			ŏ	ŏ.	- lõ	_	ŏ	_	-	ŏ	ŏ	0 6		ŏ	-	_	-	ŏ	-
32	Ammonium Nitrate	NH ₄ NO ₃	sat.		1, 2, 3, 4, 5	Č			Ŏ	ŏ	ŏ	ŏ				o o			ŏ	ŏ -	- j		Ŏ	-	- 1	ŏ	ŏ	o c) -	Ŏ	-	- 1	- 1	ŏ	-
33	Ammonium Di-Hy.Phosphate	NH ₄ H ₂ PO ₄			1, 2, 3, 4, 5		0		0	0	0	0	- -			0 0		0	-	0 -	- 0	0	0	-	-	0	0	0) -	0	-	-	-	0	-
34	Ammonium Sulfate	(NH ₄) ₂ SO ₄	10		1, 2, 3, 4, 5		\circ	0	0	0	0	0		-	0	0 0	0	0	0	0 -	- 0	0	0	-	-	0	0	0) -	0	-	-	-	0	-
35	Ammonium Sulfate	(NH ₄) ₂ SO ₄	50	1.28	1, 2, 3, 4, 5		0	0	0	0	0	0		-	0	0 0	0	0	0	0 -	- 0	0	0	-	-	0	0	0) -	0	-	-	-	0	-
36	Ammonium Sulfate	(NH ₄) ₂ SO ₄	sat.	1.3	1, 2, 3, 4, 5				0	0	0	0				0 0			-	O -	- 0		0	-	-	0	0	0	-	0	-	-	-	0	-
37	Ammonium Sulfide	(NH ₄) ₂ SO ₃	10		1, 2, 3, 4, 5) 0	0	0	0	0	0				0 0		0	0	0 -		-	0	-	-	0	0	0) -	0	-	-	-	0	-
38	Amyl Acetate	CH3CO2C5H11	pure		Ex 8, 10		- -	-	-	-	-	-		6		0 0		-	-		- 0	0	-	-	-	9	0	- -		3	-	-	0	0	-
39	Amyl Alcohol	C ₅ H ₁₁ OH	pure		Ex 7, 8, 9, 10	-	- -	-	-	-	-	-				0 0	_	-	-	-) 0		-	0	0	0	0	- -	- 0		-	-	0	0	0
40	Amyl Chloride	CH₃(CH₂)₄CI	pure		Ex 8, 10	-	- -	-	-	-	-	-		-	_	0 0	_	-	-		- 0	-	-	-	-	0	0	- -		0	-	-	-	0	-
41	Aniline	C ₆ H ₇ N	pure	1.01	5. 0.40	-		-	-	-	-	-				9 9		-	-		- 0	0	-	-	-	0	0	- -	-	0	-	-	-	0	-
42 43	Anone Antifreeze	C ₆ H ₁₀ O HOCH ₂ CH ₂ OH	pure	0.95	Ex 8, 10 5, 1.1, 2.1,3	.1	0 0	0	0	0	0	0	0			0 0		0	0		0 0		0	0	0	0	0	0	- 0		0	0	0	0	0
43	Arsenic Acid	H ₃ AsO ₄	10	1,11	5, 1.1, 2.1,3	.1			0		0	0	_ _	_		0 0			-	0 -	- 0	_	_	-	-	-	0	0				_	-	0	-
45	Arsenic Acid	H ₃ AsO ₄	80		5				0		0	0				0 0			_		- 0		_	_	_		ŏ	0 0		10			_	0	
46	Barium Chloride	BaCl ₂	10		1, 2, 4, 5	-			ŏ		ŏ		_ _	-	-	- 0			_		- -	-	0	_	-		ŏ	0 0		-	-	_	_	-	-
47	Barium Chloride	BaCl ₂	25	1.27	1, 2, 4, 5		- 0		0		0	0	_ _	-	-	- 0			-	0 -		-	0	-	-	ŏ	0	0 0		-	-	-	-	-	-
48	Barium Hydroxide	Ba(OH) ₂	sat.		1, 2, 3, 4, 5		-		ŏ	ŏ	ŏ	ŏ			0	0 0			0	ŏ -		0	ŏ	-	-	-	ŏ	0 0	-	0	-	-	-	0	-
49	Benzaldehyde	C ₆ H ₅ CHO	0.1		5				ŏ		ŏ		0			ŏŏ			-		0		-	-	-		ŏ	ŏ c	ó o		-	0	0	ŏ	0
50	Benzaldehyde	C ₆ H ₅ CHO	pure	1.05	-	-			-	-	-		2		0	0 0	-		-	- 0	Ó		-	-	-		ŏ			2	-	-		ŏ	ŏ
51	Benzene	C ₆ H ₆	pure		Ex 8, 10	-		-	-	-	-				0	0 0	-	-	-	- (0	0	-	-	-	0	0		- 0	3	-	-	-	0	Ö
52	Benzoic Acid	C ₆ H ₅ COOH	10	1.27	1, 2, 3, 4, 5			0	0	0	0	0	0	0	0	0 0	0		0	0	0	0	0	-	-	0	0	0	0 0	0	-		-	0	0
53	Benzyl Alcohol	C7H8O	pure	1.04	Ex 8, 10	-	- -	-	-	-	-				0	0 0		-	-		0	0	-	-	-	0	0	- -	- 0	0		0	-	0	0
54	Benzyl Chloride	C ₆ H ₅ CH ₂ CI	1.11			-			-	-	-		-			O -	-		-		0		-	-	-	0	-					-	0	-	
55	Bitter Salt	MgSO ₄	10		1, 2, 3, 4, 5) 0	0	0		0		0			0 0		0	-				0	-	-		0	0					0	0	0
56	Bitter Salt	MgSO ₄	sat.	1.28	1, 2, 3, 4, 5		\circ	0	0	0	0	0	\circ	\circ	0	0 0		0	-	0 -	- -	0	0	-	-	0	0	0 0	\circ	0	_	0	0	0	0

Meaning of symbols: O = Resistant "—" = Non-resistant D = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

-												Lutz - Pur	np Tube						ı	Lutz - Flow	Meter		Т		Hoses					No	ozzles			Oth	
Cr	emical Resis	tance Table						PP		B50	PVD)F	Alu		SS		HC	TR		ST SL	LM	UN \	'A											Acces	sories
Lutz	Drum and Container	r pumps, Flow meter																								esc	m.								
	ching Solution – C o		% ui noi	Spec. gravity kg/dm ³		, RE-PP-	SW-S		PP-SL-HC	dwnd					(not Ex),				H.	3aFe	аFе			hose	Se	themical hose	Special chemical hose	PP/FPM	PVDF/FPM	/SS/	SS/FPM	Nozzle		ectors	connectors
No.	Medium	Formula	Concentration	ec. grav	Suitable Pump set	PP-MS-SS,	MS, MP-PP-	PP-SL-SS	B2-PP-SL,	Container B50 PP	PVDF-MS	PVDF-SL		SW-SS	-SS-SL (not E	RE-SS-MS, MP-SS-MS	HC-SL	50 PP 120 PP	TR 120 PVDF	PPO/SAN/BaFe PPO/PPS	PPS/LCP/BaFe	PPS/LCP	PVC-Hose	Mineral oil	Ivent ho	Universal che	ecial ch	Nozzle PP/	Nozzle PVI	Nozzle Brass/ PTFE	Nozzle SS/	Nozzie ALL Automatic Al II/FPM	Automatic N ALU/EPDM	se conn	Hose conn Brass
			8	\gamma_{\text{S}}	No.	8	≅ &	₽	BS	88	≥	≥ ₹	E	SS	888	25		EE.	Ĕ	8 8	윤	£ 8	8 ≥	Ē	Solv	5	S	2	2 2	원	2 2	8 § 4	. 54	Hose SS	운품
57	Bleaching Solution	NaOCI	10		5	-		-	-	-	0	0 -	-	-	-	-	0		0		-	6	- 0		-	0	0	0	0	-	-	- -	-	- !	-
58	Bleaching Solution	NaOCI	12.5		5	-		-	-	-	9	0 -		-		-	0		0		-		- O		-	0	0	0	9	-	-	- -	_	-	-
59 60	Bleaching Solution	NaOCI	20		1, 2, 3, 4, 5	-		0	0	0	0	0 -		-			0		0	- 0	_	-	5 0		-	0	0	0	0	-	-	_ _	_	0	_
61	Borax Borax	Na ₂ B ₄ O ₇ Na ₂ B ₄ O ₇	10 sat.	1.03	1, 2, 3, 4, 5				0	0	0	0 -		Ö			0		0	- 0	-		5 5		_	0	0	0	0	_	0	_ _	_	0	-
62	Boric Acid	H ₃ BO ₃	10	1.03	1, 2, 3, 4, 5				0	0	5	0		O			0			0 0	0		5 5		-	0	0	0		0	0	- -		0	0
63	Boric Acid	H ₃ BO ₃	sat.	1.01	1, 2, 3, 4, 5				Ö	0	5	0 -		Ö			0			0 0	-		$\frac{3}{5}$		-	0	0	0	0	-	0	_ _	-	0	-
64	Bromic Acid	HBrO₃	10	1.01	1, 2, 0, 4, 0	-		6	6		_	6 -		_	_	-	-		-			-	_ _			-	õ	0	ŏ	_	-	_ _		-	_
65	Bromine	Br ₂	pure	3.19	1.	-			-	_	_			_	-	_	0	_	-	- -	l -	-	- -	_	-	_	õ	-	ŏ	-	_	- -	_	-	-
66	Butane	C ₄ H ₁₀	50		Ex 7, 8, 9, 10			-	_	_	-			O			0				0) -		0	0	0	_		0	0	- 0	0	0	0
67	Butane Diol	HO(CH ₂) ₄ OH	pure	1.01	5	-		_	-	0	0	0		Ö		O	0			0 0	O		5 -	_	O	o	Õ	-		ŏ		o o		Ö	ŏ
68	Butanol	C ₄ H ₉ OH	100		Ex 7, 8, 9, 10	-		-	-	-	-			2		O	O	-	-		O		<u> </u>		O	0	ŏ	-		ŏ	2		Ŏ	Ö	ŏ
69	Butyl Acetate	CH ₃ CO ₂ (CH ₂) ₃ CH ₃	100		Ex 8, 10	-	_	-	-	-	-		. -	6			ŏ	-	-		ŏ		<u> </u>		-	ŏ	Õ	-		ŏ	3	- -	ŏ	ŏ	ŏ
70	Butyl Alcohol	C ₄ H ₉ OH	100		Ex 7, 8, 9, 10	-	-	-	-	-	-		. -	2		Õ	Õ	-	-	- -	Ŏ		5 -	-	0	Ŏ	Õ	-		Õ	2	- -	Ŏ	Õ	Õ
71	Butyl Chloride	CH ₃ (CH ₂) ₃ CI	pure		Ex -	-	-	-	-	-	-		. -	-		-	O	-	-		-	0		-	-	0	Ó	-	-	-			-	- 1	-
72	Butyl Glycol	HO(CH ₂) ₄ OH	0.9			-	-	-	0	-	-	0 0) (С	0	0	-	-	0	0 0	0	_	- -	0	0	0	-	-	0	0	- (o -	0	0	
73	Butyl Phenol	C ₁₀ H ₁₄ O	pure		-	-	-	0	0	-	-	0 -	. -	6			0	-	-		0) -		-	0	0	3	3	-	3		-	0	-
74	Butyl Phthalate	C6H4(COOC4H9)2	pure	1.05	-	-	-	-	-	-	-	0 -	- 0	6		0	0	-	-		0	0) -	-	-	0	0	-	3	0	3		-	0	0
75	Butylene Glycol	C ₄ H ₁₀ O ₂	pure	1.01	5	-	-	-	-	0	0	0) (С		0	0	-	0	0 0	0	0	o -	-	0	0	0	-		0	0	\circ	0	0	0
76	Butyric Acid	CH ₃ (CH ₂) ₂ CO ₂ H	20	0.88	1.1, 2.1, 3.1	5		0	0	0	0	0 -	. -	О		0	0		0	- 0	-	0	0 0	-	-	0	0	0	0	-	0		-	0	-
77	Butyric Acid	CH3(CH2)2CO2H	pure	0.96	5				0	0	0	0 -	. -	O			0		0	- 0	-) -	-	-	0	0	0	0	-	0		-	0	-
78	Calcium Di-Hy. Sulphite	Ca(HSO ₃) ₂	10		1, 2, 3, 4, 5			0	0	0	0	0 -	- -	С		0	0	0	0	- 0	-	6	\circ	-	-	0	0	0	0	-	0	- -	-	0	-
79	Calcium Di-Hy. Sulphite	Ca(HSO ₃) ₂	sat.		1, 2, 3, 4, 5		0	0	0	0	0	0 -	- -	С	0	0	0	0	0	- 0	-	6	\circ	-	-	0	0	0	0	-	0		-	0	-
80	Calcium Chlorate	Ca(CIO ₃) ₂	10		5) 0	0	0	0	0	0 -	- -	C) 0	0	0	0	0	0 0	-	0) -	-	-	0	0	0	0	-	0	- -	-	0	-
81	Calcium Chloride	CaCl ₂	10		1, 2, 3, 4, 5			0	0	0	0	0 -	- -	С		0	0	0	0	- O	-	0	$\circ \mid \circ$	-	-	0	0	0	0	-	0		-	0	-
82	Calcium Chloride	CaCl ₂	sat.	1.4	1, 2, 3, 4, 5			0	0	0	0	0 -	- -	С		0	0	0	0	- O	-	0	$\circ \mid \circ$	-	-	0	0	0	0	-	0	- -	-	0	-
83	Calcium Hypochlorite	Ca(CIO) ₂	10		5	-		-	0	0	0	0 -	- -	-		-	0		0	- O	-		- -		-	0	0	0	0	-		- -	-	-	-
84	Calcium Nitrate	Ca(NO ₃) ₂	50	1.48	1, 2, 3, 4, 5,	6 (0	0	0	0	0	0	\circ	С			0	0	0	- O	-	0	\circ	-	-	0	0	0		0	0	\circ		0	0
85	Camphor	C ₁₀ H ₁₆ O			- -	-	0	0	-	-	0	- () (С			-		-	- O	0	0	- -	-	0	0	3	3		3		- -	0	0	
86	Caprylic Acid	CH ₃ (CH ₂) ₆ COOH			5	-	-	-	-	0	0	0 -	- -	О			0	-	0	- O	-) -	-	-	0	0	-	0	-	0	- -	-	0	-
87	Carbolic Acid	C ₆ H ₅ OH	50		-	-	-	-	-	-	-	- (О			0	-	-		0	_) -	-	-	0	0	-		0	0	- 0	-	0	0
88	Carbolic Acid	C ₆ H ₅ OH	90	1.07	-	-	-	-	-	-	-	- (О			0		-		0) -	-	-	0	0	-		0	0	- 0	-	0	0
89	Carbon Tetrachloride	CCI ₄	pure	1.59	5	-		-	-	-	0	0 -	- -	С			0		0		-) -	-	-	-	0	-	0	-	0	- -	-	0	-
90	Carbonic Acid	H ₂ CO ₃			1, 2, 3, 4, 5				0	0	0	0 -		Q			0		0	- 0	-		\circ		0	0	0	0	0	-	0	- -	-	0	-
91	Castor Oil	Mixture		0.96	5	C			0	0	0	0		С			0	0	0	0 0	0) -	0	0	0	0	0		0	-	$\circ \mid \circ$	-	0	0
92	Caustic Potash	КОН	20	1.19	-	(2			0	2	2	0 -	. -	2			0	-	-	- 3	-) -	-	-	0	0	2	2	-	2	- -	-	0	-
93	Caustic Potash	КОН	30	1.29	-	(2			0	2	2	9 -		2			0		-	- 3	-		2 -		-	0	0	2	2	-	2	- -	-	0	-
94	Caustic Potash	КОН	60	1.63	-	(2		0	0	2	2	0 -		2		0	0		-	- 3	-) -		-	0	0	2	2	-	2	- -	-	0	-
95	Chloric Acid	HCIO₃ NeOCI	10		1, 2, 4, 5	-	-	-	0	-	0	0 -		-	-	-	0		0	- -	-	0	- 0		-	0	0	0	0	-	-	- -	-	-	-
96	Chlorine Solution	NaOCI	10		5	-		-	-	-	0	0 -		_	-	-	0		0	- -	-	0	- 0		-	0	0	0	0	-	-	- -	-	-	-
97	Chlorine Solution	NaOCI	12.5		5	-		-	_	-	0	0 -		_	-	_	0		0	- -	_	6	- 0	-	_	0	0	0	9	-	-	- -	-	-	-
98	Chlorine Water Chloroacetic Acid	Cl ₂ /H ₂ O CICH ₂ COOH	sat.	1.36	5	-		-	0			0 -		_	-		0		0	- 3	-		- -			0	0	2	0			_ _	_	-	-
99	Chloroacetic Acid	CICH₂COOH	85 98	1.36		-		-		2	2	0 -		-			0		-		_	0	- -		_	0	0	2	2	-		_ _	_	_	_
100					Ev 0 10	-	-	_	<u> </u>	2	2	0 -		0		0	0			- 3		9) -		_	0	0	-	2	_	0		_	0	_
101	Chlorosthana	CeHsCl CH3CH2Cl	pure	1.11 0.92	Ex 8, 10		-	-	_	-	0	0 -					0		0		-) -		_	0	0	-	0	-	0		-	0	
	Chloroethane		pure		5		-		_	_		_			_	_	_		-			-	-	_			~		-		0	_ -	_	_	
103 104	Chloroform Chlorosulphonic Acid	CHCl₃	100	1.48						_	-	O -		6		0	-		_) - - -	-	_	-	0	_	3	-	9	_ _		-	-
		HSO₃CI Cl₃CCH₃	pure	1.77	5		_	-		-	0	0 -		-	- 0		0			_ _	_) -		_	0	0	_	0	_	0	- -		0	-
105 106	Chlorothene Chlorotoluene	C ₇ H ₇ Cl	pure	1.34	5		-		_	_				0			0				_) -) -	_		-	0	-	-		0	_ _	_	0	
106	Chromic Acid		30	1.11	5	-	-		_	-	0	0 -		C	, 3	-				- 6	_		- 0	_	_	0	0	_	0	_		_ _	_	-	_
107		H₂CrO₄ H₂CrO₄	50		5		0		0	-	0	0 -	_	_	-	_	0			- 6	_		- 0		_	0	0	_	0			_ _			_
108	Chromic Acid			1 22					0		5	0 -		-	0		0			0 0			5 0		_	0	0	0	0	_		- -	-	0	
110	Citric Acid Clophene	C ₆ H ₈ O ₇ Mixture	50	1.22	1, 2, 3, 4, 5	-		-	-	-	-	-		0			0					0	5 -			0	0	-			0	- -	_	0	-
111		Mixture	pure						_	-	-			6			0) -				0	_				- -		0	-
112	Clove Oil	Mixture Cu(C ₂ H ₃ O ₂) ₂	50		1 2 2 4 5				0		0	0 -					0			_ _	-		$\frac{1}{2}$		-	0	0	0			0	_ _		0	
112	Copper Acetate	UU(U2П3U2)2	50		1, 2, 3, 4, 5		, 0			-		9			, 0			U	9	- -	_				_		\cup			-		- -			

Meaning of symbols: O = Resistant "—" = Non-resistant $\mathbb O$ = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

		Τ									Lutz	- Pump	Tubes				Т		Lutz	· Flow Mete	r			Ho	ses		T		No	ozzles				ther
Chemical Resist	ance Table						PP		В	50 F	PVDF	P	llu		SS	HC		TR	ST	SL LN	1 UN	VA					ļ.,						Acces	ssories
Lutz Drum and Container	numne Flow motor																																	
LUIZ DI UIII UIIU CUIIIUIIIGI	pointps, Flow interes		°E			,		9	₽						_										l hos	ose								
Copper Nitrate – Formal	dehvde	Concentration in %	gravity kg/dm ³			-MS		3	Dump	-				2	3			L.	aFe	ع ا				hose	e emical	ig.	MA.	PVDF/FPM	70	M G	Nozzle	Nozzle	connectors	ctors
Copper Miliale — Formai	uenyue	ntratic	gravit	Suita	ible		9-19	SS-	. '2'. '	PP .	N.				100	-MS -WS	a de de	PVDF	PPO/SAN/BaFe	PPO/PPS	8	S	ose	10 1	Solvent nose Universal che		Nozzle PP/FPM	PVD	Brass/	Nozzle SS/FPM	atic N		Sonne	connectors
No. Medium	Formula	ouce	Spec.	Ex Pump	p set	P-MS MS, M	PP-MS-HC	PP-SL-SS	Container	B50 PP PVDF-MS	PVDF-SL	Alu-MS	Alu-SL		SS-SL	MP-SS- HC-SL	TR 50 P	TR 120	PO/S	PPO/PPS	PPS/LCP	SS/PPS	PVC-Hose	Mineraloil	Solver	Specia	lozzle	Nozzle	Nozzie	Nozzle	Nozzie ALL	ALU/FPM Automatic I	Hose o	
- 140 O NO 1	0.410.)	_	+			_	_	_				1	_	_	_		+	_	-			=			_	_	+	_	_	_	_ 4.	4 4	+	1
113 Copper Nitrate 114 Copper Sulfate	Cu(NO ₃) ₂ CuSO ₄	25 18	1.25				0			0 0		_	_			0 0			_	O -	0	0	0	-	- C			0		0	_ _	-	0	1 - 1
115 Copper Sulfate	CuSO ₄	sat.	1.21							5 5		_	_			0 0				0 -		0	0		- 6			0		0				-
116 Copper(I)Chloride	CuCl	10		- 1, 2,	0, 4, 0		-			5 -		_	-	-	-		-	-	-	<u> </u>		-	ŏ		- l č			ŏ	_	-	_ _			
117 Copper(II)Chloride	CuCl ₂	20	1.21	-		-	-			5 -	_	-	-	-	-	- -	-	-	_	<u> </u>	-	-	ŏ		- l č			õ	-	_	- -		_	-
118 Corn Oil	Mixture	pure		5			0			jο	0	0	0	0	0	0 0	10	0	0	o c		0	-	0	o l č				0	0	o c) -	0	0
119 Cresol	C7H8O		1.05	-		-	-		-	- 0		Ŏ	Õ			0 0		Ŏ	-	- C		O	-	-		Ŏ				-	- C		O	O
120 Crotonaldehyde	C ₄ H ₆ O	pure	0.85	Ex 8, 10		-	-				-	-	-			0 0		-	-	- C		0	-	-	- I C			-		O ·	- C			0
121 Cyano Hydrogen Acid	HCN	pure	0.69	Ex 8, 10		-	-		-	- -	-	-	-			0 0		-	-			0	-	-	- I c	0	-	-		0	- -	-	0	-
122 Cyclohexane	C6H12	pure	0.78	Ex 7, 8, 9	9, 10	-	-	-	-	- -	-	-	-			0 0		-	-	- C		O	-	- (o c			-		O ·	- C) -		0
123 Cyclohexanol	C ₆ H ₁₁ OH	pure	0.94	5		-	-	-		- 0	0	-	-		0	0 0		0	-			0	-) C	0	-	0		0		-	0	-
124 Decalin	C ₁₀ H ₁₈	pure	0.88	5		-	-			\circ		0	0		0	0 0		0	0	0 0		0	-	- () C					0	- C		0	0
125 Dextrin	(C ₆ H ₁₀ O ₅)xH ₂ O	18		1, 2, 3	3, 4, 5, 6	0	0	0) (\circ	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	-	- C) 0	0	0	0	0	$O \mid C$	0))	0
126 Dibutyl Ether	C4H9OC4H9	pure	0.77	Ex 8, 10		-	-					-	-		0	0 0	-	-	-	- C	0	0	-	-	- C) 0	-	-	_	3		-	0	0
127 Dibutyl Phthalate	$C_6H_4(CO_2C_4H_9)_2$	pure	1.05	-			-			- -	-	-	0	6	0	0 0	-	-	-	- C	0	0	-	-	- C	0			0	3	- -	-	0	0
128 Dichloro Acetic Acid	Cl ₂ CHC00H	pure	1.56	-		-	2	- () (2 2	0	-	-		-	- O		-	-	3 -	_	-	-	-	- C			2	-		- -	-	-	-
129 Dichloro Difluormethane	CF ₂ Cl ₂	pure	1.32	-		-	-	-		- -	-	-	-		0	0 0		-	-	3 -	-	0	-	-	- -	0		-		3		-	_	-
130 Dichloro Ethane	CICH ₂ CH ₂ CI	pure	1.26	Ex 8, 10		-	-		-	- -	-	-	-			0 0	_	-	-	- -		0	-	-	- C	-	-	-		0	- -	-		-
131 Dichloro Ethylene 1.1	Cl ₂ CCH ₂	pure	1.22	Ex -		-	-		-	- -	-	-	-		0	0 0		-	-		0	0	-	-	- -	0	-	-		0	- -	-	0	-
132 Dichloro Methane	CH ₂ CI ₂	100	1.33	-		-	-			- -		-	-			0 0		-	-	- -	-	0	-		- -	0		-		3	- -	-	_	-
133 Diesel Fuel	Mixture	100		5, 6		-	-			0 0		0	0			0 0		0	0	0 0		0	0) C			0	_		$\supset \mid \subset$		_	0
134 Diethanolamine	HN(CH ₂ CH ₂ OH) ₂		1.1			-	-			- -	-	-	-		0	0 0		-	-		_	0	-	-	- C			-		3	- -	-		-
135 Diethyl Ether	(CH ₃ CH ₂) ₂ O	100	0.71	Ex -		-	-			- -	-	-	-			0 0		-	-	- -		0	-	-	- -	9		-		3	- -	-	0	1 -
136 Diethylamine	(CH ₃ CH ₂) ₂ NH	10	0.7	Ex 8, 10		-	-		-	- -	-	-	-		0	0 0		-	-	- C		0	-	-	- 0			-		3		-	0	0
137 Diglycolic Acid	C ₄ H ₆ O ₅	30		1, 2, 3			0					-	-			0 0			-	6 -		0	0	-	- 0			0		0	- -	-	0	1 -
138 Diglycolic Acid	C4H6O5	sat.	0.00		3, 4, 5	0	0					-	-			0 0		0	_	6 -		0	0		- C	0		0		0	- -) -	0	0
139 Dimethyl Benzene	C ₆ H ₄ (CH ₃) ₂	pure	0.86	Ex -		-	-			- -	-	-	-			0 0		-	-			0	-	-	- c			-		0	9		_	
140 Dimethyl Formamide 141 Dimethylamine	HCON(CH ₃) ₂ C ₂ H ₇ N	pure	0.95	-		-	-				0	-	-		0	0 0		-	-	- C	_	_	-	-	- 0			3	_	3	- C)	_	0
142 Dioxane	C ₄ H ₈ O ₂	pure	1.03	Ex 8, 10		-	-		_			-	_			0 0		_	_	- C		0	-		- 0			- 1		2		. 0		0
143 Ethanol	CH3CH2(OH)	pure	0.79	Ex 7, 8, 9		-	- 1				15	1			<u>5</u>	0 0		1		- 0		0	_		5 6	_		- 1		2		. 0		0
144 Ether	(C ₂ H ₅) ₂ O	pure	0.73	Ex -	3, 10	_	_					_			ŏ	0 0	_	1 -		- 0		0	_	-	- -	ő		_		3	_ _	. -	0	ŏ
145 Ethereal Oils	Mixture	puro	0.71	-		-	-			- -	_	_	0	-	ŏ	0 0		_	_	- 0		0	-) c		_	-		3			0	O
146 Ethyl Acetate	CH3COOCH2CH3	pure	0.9	Ex 8, 10		-	-		_	- -	_	_	-		ŏ	0 0		_	_	- C		O	-		- 0			-		3				o l
147 Ethyl Acrylate	CH2=CHCO2CH2CH3	pure	0.0	Ex 8, 10		_	-		_	- -	-	_	-			0 0		-	_		-	Ŏ	-	_	- l č			_		3	_ _		_	ŏ
148 Ethyl Alcohol	CH ₃ CH ₂ (OH)	pure	0.79	Ex 7, 8, 9		-	-		-	- -	-	-	-			0 0		-	-	- c		Ŏ	-	0	o l č			-		2	- -	. 0		Ŏ
149 Ethyl Benzene	CH ₃ CH ₂ C ₆ H ₅	pure	0.87	Ex 8, 10		-	-			- -	-	-	-			0 0		-	-	- C		O	-		- I c			-		3	- -		0	0
150 Ethyl Chloride	C2H5CI	pure	0.92	5		-	-		-	- 0	0	-	-			0 0		0	-			0	-	-	- C		-	0		0	- -	-		-
151 Ethyl Glycol	HOCH ₂ CH ₂ OH	pure	0.93	Ex 7, 8, 9	9, 10	-	-			- -	-	-	-	0	0	0 0	-	-	-	- C) 0	0	-	- () C) 0	-	-	0	0		-	0	0
152 Ethylene Di- Bromide	Br(CH ₂) ₂ Br	pure	2.18	-		-	-		- () -	-	-	-	0	0	0 0	-	-	-	0 -	0	0	-	-	- -	0	-	-	-	0	- -	-	0	-
153 Ethylene Chlorohydrin	CICH2CH2OH	pure	1.2	Ex 8, 10		-	-	-		- -	-	-	-	2	0	0 0	-	-	-		0	0	-	-	- C	0	-	-	-	2		-	0	-
154 Ethylene Diamine	(CH ₂) ₂ (NH ₂) ₂	pure	0.98	Ex 8, 10		-	-			- -	-	-	-	2	0	0 0	-	-	-		-	0	-	-	- C	0	-	-	0	2	- -	. 0))	0
155 Ethylene Dichloride	CI(CH ₂) ₂ CI	pure	1.26	Ex 8, 10		-	-	-		- -	-	-	-	0	0	0 0	-	-	-		0	0	-	-	- C) 0	-	-	-	0		-	0	-
156 Ethylene Glycol	(CH ₂ OH) ₂	pure	1.11	1.1, 2	2.1, 3.1, 5	0	0	0) (\circ	0	0	0	0	0	0 0	0	0	0	0 0	0	0	①	0	\circ) 0	0	0	0	0	O C) 0))	0
157 Ethylene Oxide	(CH ₂) ₂ O	pure	0.89	-		-	-	-	-	- -	-	-	-	6	0	0 0	-	-	-		0	0	-	-	- -	0	-	-	-	3	- -	-	0	-
158 Fatty Acids	CnH2n+1COOH	100	0.9	5		0	0	0) (\circ	0	-	-	0	0	0 0	0	0	-	O -	0	0	-	-	- C	0	0	0	-	0	- -	-	0	-
159 Ferric(III)Chloride	FeCl ₃	50	1.55	1, 2, 4	4, 5		0			O			-	-	-	- O			-	0 -	0	-	0	-	- C		0	0	-	-	- -	-	-	-
160 Ferric(III)Sulfate	Fe ₂ (SO ₄) ₃	50	1.61	1, 2, 3				0		\circ	0		-		0	0 0			-	O -			0		- C			0		-	- -	-	-	-
161 Ferrous(II)Chloride	FeCl ₂	10	1.09	1, 2, 4			0			\circ			-	-	-	- 0				O -			0		- C		0	0		-	- -	-		-
162 Ferrous(II)Chloride	FeCl ₂	50		1, 2, 4			0			O			-			- 0				O -			0		- C		0	0		-	- -	-	-	-
163 Ferrous(II)Nitrate	Fe(NO ₃) ₂	pure		1, 2, 3						\circ			-			0 0				0 -			0		- C			0			- -			-
164 Ferrous(II)Sulfate	FeSO ₄	20	1.21	1, 2, 3						\circ			-	_		0 0				O -			0		- C			0			- -			-
165 Fish-Liver Oil	Mixture		0.98	5						O			0			0 0				0 0			-		\circ						$\supset \mid C$		_	0
166 Formaldehyde	HCH0	10								0 0			-			0 0				0 -			0		- C						- -			-
167 Formaldehyde	HCH0	35		5						0 0			-			0 0				0 -			-		- C			0			- -			-
168 Formaldehyde	HCH0	40		5		0	0	0) (\circ	0	-	-	0	\circ	0 0	0	0	0	0 -	0	0	-	-	- C		0	0	-	0		-	0	-
2		0												_			_				_			0										

Meaning of symbols: O = Resistant "—" = Non-resistant D = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Ck	emical Resistan	re Table							P		B50	PVI	Lutz - F	Pump 1			S	нс	T	TR	Lutz - Flov	Meter	UN \	'A		Hose	3				Noz	zzles				other essories
											БЭО	PVI	DF	A	u	\top	<u> </u>	пс	+		31 SL	LIVI	UN											\top		
Lutz	Drum and Container pum	ps, How meter		۶_			١.			70																	hose	ose								
For	mamide – L ime Milk		ntration in %	gravity kg/dm³		Suitable	MS-SS, RE-PP. MP-PP-MS	웃	SS	SL, PP-SL-HC	ar pump	SI				SL (not Ex),	MS,	SW	ا م	PP	N/BaFe S	P/BaFe		es es	oil hose	hose	Universal chemical hose	chemical hose	PP/FPM	PVDF/FPM	Brass/	NOZZIE SS/FPIM	tic Nozzle	tic Nozzle DM	nnectors	nnectors
No.	Medium	Formula	Concent	Spec. gr		Pump set No.	PP-MS-	PP-MS-HC	PP-SL-SS	B2-PP-SL,	Container B50 PP	PVDF-MS	PVDF-SL	Alu-MS	Alu-SL	B2-SS-SL (SS-SL RE-SS-MS,	MP-SS- HC-SL	TR 50 PP	TR 120 PP TR 120 PVDF	PPO/SAN/BaFe PPO/PPS	PPS/LCP/BaFe	PPS/LCP	PVC-Hose	Mineraloil	Solvent	Universa	Special	Nozzle F	Nozzle F	Nozzle E PTFE	Nozzle S	Automatic ALU/FPM	Automatic	Hose cor SS	Hose cor Brass
169	Formamide I	HCONH₂	100			-	2	2	0	0	2	2	0	2	0 (2) () C		-	-	- 3	-) -	_	-	0	0	2	2	0 (2 -	- -	0	0	
170	Formic Acid	HCOOH	50			-	2	2	0	0	2	2	0	-	- (2 () C	0		-	- 3	-	0) -	-	-	0	0	2	2	- (2 -	- -	-	0	
171		HCOOH	pure		Ex	8, 10	-	-	-	-	-	-	-	-) C			-		-) -			0	0	-	-		2 -		-	0	
172		Cl ₂ CF ₂	pure	1.32		-	-	-	-	-	-	-	-	-) 0				- 3) -		- 1	-	0	-	-		3 -		-	0	
173		Mixture				3	0	0	0	-	O	0	-	-)	- 0				0 0			0 0			0	0	0	0) ·	- -	-	0	
174		Mixture				5, 6	-	-	-	-	0	0	0	0			$\mathcal{O} \setminus \mathcal{O}$			0	0 0			$S \mid C$		0	0	0	-	0			0		0	
175 176		G6H4O2		1.16		-	-	-	_	_	-	-	-	- ②			\mathcal{O}					0) -	-	-	0	0	-	-		3 -	- -	-	0	
177		C ₆ H ₆ O ₂ C ₆ H ₂ (OH) ₃ COOH	pure 50	1.13		1, 2, 3, 4, 5, 6	0	0	0	0	0	0	0	Ö							- 0	0)			0	0	0	0		② · O (0 0	0	0	
177		Va2SO4	50	1.46		1, 2, 3, 4, 5, 6	0	0	0	0	0	0	0	0							- 0			5 6		_	10	0	0	0		5 6				
179		G6H12O7	30	1.40		5	ŏ	ŏ	0	Ö	0	ŏ	ŏ	ŏ			5 6				- 0			5 -			0	ŏ	0	0		$\tilde{\mathbf{S}}$.	- 5		0	
180		G6H ₁₂ O ₆	pure	1.13		1, 2, 3, 4, 5	0	0	0	0	0	0	0	-			5 6				0 0			$\frac{1}{2}$		_	0	0	0	0		$\tilde{\mathbf{S}}$.	- -		0	
181		C3H8O3	pure	1.26		5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0			$\delta \mid \tilde{c}$				ŏŏ			5 -			ŏ	ŏ	ŏ	ŏ			0		ŏ	
182		HOCH2CH2OH	pure	1.11		5, 1.1, 2.1,3.1	ŏ	ŏ	Ŏ	Ŏ	ŏ	ŏ	ŏ	ŏ			o c				o o			o c			Ŏ	Ŏ	ŏ	ŏ			o o		Ŏ	
183	•	HOCH₂COOH	37			5	Õ	Ŏ	Õ	Õ	6	Õ	Ŏ	-			o c				6 6			5 -		-	O	Õ	ŏ	Õ		j .		-	O	
184		HOCH₂COOH	70			5	-	0	-	0	6	0	0	-			-	. 0			6 6	-	0	- -	-	-	0	0	0	0	-		- -	-	-	-
185	Heptane	C7H16	pure	0.68	Ex	7, 8, 9, 10	-	-	-	-	-	-	-	-	- () () C))	-			0	0) -	-	0	0	0	-	-	0	\circ	0 0	-	0	0
186	Hexamethylene Tetramine	CH ₂) ₆ N ₄	10			-	-	-	-	-	-	-	-	-	0	6 () C	0	-	-		6	6) -	-	-	0	0	-	-	0	3 -	- -	-	0	0
187	Hexane	G6H ₁₄	pure	0.66	Ex	7, 8, 9, 10	-	-	-	-	-	-	-	-) C)	-			0) -	-		0	0	-	-	0		0 0		0	
188	Hexanol	CH ₃ (CH ₂) ₄ CH ₂ OH		0.83	Ex	7, 8, 9, 10	-	-	-	-	-	-	-	-			\circ					0) -	-	0	0	0	-	-			0 0	-	0	
189	Hydrazine I	H2NNH2	pure			5	0	0	0	0	6	0	0	-	- () (C	$\supset \mid \subset$) 0	6 6	-) -	-	-	0	0	0	0	- () ·	- -	-	0	-
190	******	l J	pure			-	-	-	-	0	6	-	0	-	-	- -	- -	. 0	-	-	- 6	-	6	- -	-	-	0	0	3	3	-	- -	- -	-	-	-
191		HBr	10	1.07		-	-	-	-	-	-	-	-	-	-	- -	- -	-	-	-	- -	-	-	- -	-	-	-	O	O	O	-		- -	-	-	-
192	*	HBr	48	1.44		-	-	-	-	-	-	-	-	-	-	- -	- -	-	-	-	- -	-		- -		-	-	0	0	0	-	- -	- -	-	-	-
193	,	HCI	10			1, 2, 4, 5	-	0	-	0	0	0	0	-	-	- -		0			- 0		_	- 0		-	0	0	0	9	-	- -	- -	-	-	_
194		HCI HCI	30	10	- 1	1, 2, 4, 5	-	0	-	0	0	0	0	-	-						- 0			- 0			0	0	0	0	-	- -	- -	-	-	-
195 196	*	HCN	sat.	1.2 0.69		8, 10	-		_	0			0	-	_ (- 0	-) -		_	0	0			-) .	- -	-	0	-
197		HF	pure 40	1.06	EX.	-	_	6	_	6	_	6	6	_	-	_	-		6	6		1 -	-		-	1 -	0	0	0	0					-	-
198		 HF	60	1.00		-	_	-	_	6	_	-	6	_	_	_ .	. -		-			1 -	l - l	- -	_	_	0	ŏ	0	ŏ	_	_ .	- -	-	-	-
199	V	 HF	70	1.23			_	_	-	6	-	_	6	-	_	_ .			-		- -	-		- -		_	ŏ	ŏ	ŏ	ŏ	-		- -	_	_	_
200		 H₂SiF ₆	32			1, 2, 4, 5	-	0	-	Ŏ	0	0	ŏ	-	_	- -	- -	. 0	10		- 0	-	0	- 1 0			Ŏ	Ŏ	ŏ	ŏ	-		- -	-	-	-
201		H ₂ O ₂	3	1.01		1, 2, 3, 4, 5	0	Ŏ	0	Õ	Ŏ	Õ	Ŏ	0	0 (o c) c				0 0			o o		-	Õ	Õ	ŏ	Õ	0	Э.	- 0	-	0	0
202	Hydrogen Peroxide	H2O2	10	1.04		1, 2, 3, 4, 5	0	0	0	0	0	0	0	0) C				0 0	-		0		-	0	0	0	0	0) ·	- 0	-	0	
203	Hydrogen Peroxide	H2O2	20	1.07		1, 2, 3, 4, 5	0	0	0	0	0	0	0	0	0	\circ) C	0	0	0 0	0 0	-	- () C	- (-	0	0	0	0	0	Э .	- 0	-	0	0
204	Hydrogen Peroxide	H ₂ O ₂	30	1.11		1, 2, 3, 4, 5	0	0	0	0	0	0	0	0	0) () C	0	0	0	0 0	-	- () C	-	-	0	0	0	0	0) ·	- 0	-	0	0
205	Hydrogen Peroxide	H ₂ O ₂	90	1.42		5	-	-	-	-	6	0	0	0	0) () C				6 6) -		-	0	0	-	0	0) ·	- 0	-	0	0
206	Hydrosilicofluoric Acid I	H2SiF6	32	1.17		1, 2, 4, 5	-	0	-	0	6	0	0	-	-		- -	. 0		\circ	- 6		_	- 0		-	0	0	0	0	-		- -	-	-	-
207		Mixture		1		-	-	-	-	-	-	-	-	-			\circ		_		6 6	-		\circ		-	0	0	-	-	- (Э .	- -	-	0	-
208		Mixture				5	-	0	-	0	-	0	O	-			- -	O			- -	-		- -		-	0	O	O	0	-	- .	- -	-	-	-
209		CHI3				1, 2, 3, 4, 5	0	0	0	0	-	0	0	-) (0		-		0			0	0	0	0) ·	- -	-	0	
210		C ₃ H ₇ CH ₂ OH	100			7, 8, 9, 10	-	-	-	-	-	-	-	-			$\mathbf{S} \mid \mathbf{S}$		-	-		0) -) -		_	0	0	-	-		. S	- 0		0	
211		C ₈ H ₁₈	pure		Ex	7, 8, 9, 10	-	_	_	-	-	_	-	-			\mathcal{O}			-	- -	0		<i>-</i>	-	0	0	0	-	-) .	- 0	-	0	
212 213		CaH ₁₇ OH	pure	0.83	Ev	7 0 0 10	_	_	_	_	-	-	_	_						_		0		0 -	_	0	0	0	-	-) .	- 0		0	
213		CH ₃) ₂ CHOH CH ₃ COOCH(CH ₃) ₂	pure			7, 8, 9, 10 8, 10	_	_	_	_	-	-	_	-								10) -) -	_		0	0	_	_		② ·		0		
214	1.50		nure	0.89					_	_									-			0)			0	0	_		0	3		-	0	0
216		CH ₃) ₂ CHOCH(CH ₃) ₂ Mixture	pure			7, 8, 9, 10		-	_	_	_	_	-	-				0	-	_			0)	0	0	0	0	-	-	0) C	0 0	-	0	0
217		CH3CHOHCOOH	10	0.00	LA	5	0		0	0		0	0	-				0 0	0	0 0	- 0	-	0 0) -) -	-	-	0	0		0	- ($\stackrel{\circ}{\circ}$.				
218		CH₃CHOHCOOH	90			5	0	0	0	0	0	0	0	_				0	0	0 0	- 0		0	5 -			10	0	õ	õ			- -			
219		Mixture	pure			5	0	o	ŏ	Õ	ŏ	ŏ	ŏ	-			5 6	0 0		0 0	0 0	-	0 0	<u> </u>			0	Ö	0 0 0	Õ	- (ο̈́Ι.	- -			
220		Pb(CH3CO2)2	10			1, 2, 3, 4, 5	ŏ	ŏ	ŏ	0	0	0	ŏ	-				0			- 0	-	$\mathbf{I} \cap \mathbf{I}$	\mathbf{c}	- (o	ŏ	õ	ŏ		ŏΙ.	- -			
221		Pb(CH ₃ CO ₂) ₂	sat.			1, 2, 3, 4, 5	0	0	ŏ	0	0	0	0	-			$\tilde{\mathbf{o}}$				- 0	-	0	\tilde{o}	-		0	0		\circ	- (ŏ.	- -			
222		Pb(NO ₃) ₂	20	1.33		1, 2, 3, 4, 5	Ŏ	O	ŏ	Õ	ŏ	Ō	ŏ	0	0		5 0	0	0	O	0 0	0	0) G	-		O	Õ	Õ	O	0	ŏ .	- 0			0
223		C ₂ H ₅) ₄ Pb	pure	1.66		1, 2, 3, 4, 5	Õ	0	ŏ	ŏ	-	0	ŏ	-				Ó	O			-	0	0 0	-		O	0	0	0	- (Э .	- -		0	-
224		Ca(OH) ₂	15			-	Õ	Ŏ	-	-	0	Õ	-	-				0	0	0 0	- 0	-	- (5 -		-	O	O	0	0	- (ō .	- -	-	O	-
					_			_	_																											

Meaning of symbols: O = Resistant "—" = Non-resistant \mathbb{O} = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

② = Special seal EPDM ③ = Special seal Viton®-FEP ④ = Special bearing Rulon ⑤ = Measuring chamber for Nitric Acid ⑥ = On demand

10 Chanter

C	nemical Resist	tance Table						PP		B50	Lu t PVDF	tz - Pump	Tubes		SS		НС	TR		utz - Flow	Meter	UN V			Hoses	3				Nozzlo	es			Other Accessori	
	Drum and Container						Т			550	TVDI		Alu				110			JI JL	LIVI	ON V				gų.									
	seed Oil – P erchloric		% ui uc	y kg/dm³		RE-PP-			PP-SL-HC	dwnd					not Ex),				<u>د</u> ا	are	ı.Fe			1086	Ф	Universal chemical hose	chemical hose	PM	PVDF/FPM Brass/	PM	NBR	Nozzle	Nozzle	ctors	CIOIS
No.	Medium	Formula	entration in	: gravity	Suitable Pump set	MS-SS,	PP-MS-HC	PP-SL-SS		Container p B50 PP	PVDF-MS	MS	-SL	NS NS	-SS-SL (not l	RE-SS-MS, MP-SS-MS	3L	50 PP 120 PP	TR 120 PVDF	PPO/SAN/BaFe	PPS/LCP/BaFe	PPS/LCP	PVC-Hose	Mineral oil h	ent hos	ersal ch	ial cher	ile PP/FPM	le PVDF/	ile SS/FPM	Nozzle ALU/NBR	Automatic N ALU/FPM	ౢ⋝	conne	
140.	medium	Tomula	Conc	Spec.	No.	-G &	ğ 4	PP-8	B2-F	B20 E	PVDF-MS	Alu-MS	A	SW-WS	88-9	MP-9	HC-SL	## ##	TH G	PPO OA	PPS	PPS/LCF	8 8	Min	Solvent	- Sign	Special	Nozzle	Nozzle Nozzle	Nozzle	Nozz	ALU	ALU	운영 문 문	Brass
225 226	Linseed Oil Lithium Chloride	Mixture LiCl	pure 45	1.3	1, 2, 3, 4, 5, 6	0	0	0	0) (0	0		0	0			O C	0	0 0			0	0	0	0	0 0))	0	0	-		O -
227	Lithium Sulfate	Li2SO4	25	1.23	5	0		0	ŏ		5 6		-	0			ŏ			- 0	-	- (-	ŏ	ŏ		ŏ -	. 0	-	-	-		-
228	Magnesium Carbonate	MgCO ₃			1, 2, 3, 4, 5	0		0	0	0) C		-	0			0			0	-) 0) _	-	0	0	0	0 -	. 0	-	-	-	0 -	-
229	Magnesium Chloride	MgCl ₂	10		1, 2, 4, 5	-	0	-	0) (-	-	-	-	0		0	- 0	-	0 .	- 0		-	0	0	0	0 -	-	-	-	-		-
230	Magnesium Chloride	MgCl ₂	sat.		1, 2, 4, 5	-	0	-	0		\circ		-	-		-	O	0	0	- 0	-	0 .			-	O	O	0	0 -	-	-	-	-	- -	-
231	Magnesium Nitrate	Mg(NO ₃) ₂	25	1.21	3	2		0	0				-	0			0	-		- 3	-	0			-	0	0	2	2 -	2		-	-		-
232 233	Magnesium Sulfate Magnesium Sulfate	MgSO ₄ MgSO ₄	10 sat.	1.28	1, 2, 3, 4, 5 1, 2, 3, 4, 5	0		0	0				0	0			0		0	- O	_	- (-	0	0	0	0 0			0	0		0
234	Maleic Acid	(CHCOOH) ₂	35	1.20	1, 2, 3, 4, 5	0		0	0		5 6			0			0		0	- 0	_	0			1 -	0	0	0	0 0			10	-		0
235	Maleic Acid	(CHCOOH) ₂	sat.		1, 2, 3, 4, 5	o		ŏ	ŏ		5 6			ŏ			Õ		ŏ.	- 0	_	0			-	ŏ	ŏ	ŏ	0 0			ŏ	-		ŏ
236	Malic Acid	(HO₂C)CH₂CHOH	50		5	O		Ŏ	Õ		o		-	Ö			Õ			O	-	0		-	-	Ŏ	Õ	ŏ	0 -	Ō		-	-	0 -	-
237	Manganese(II)Chloride	MnCl ₂	20	1.19	5	-	0	-	0	0) C) -	-	-	-	-	0	0	0	- 0	-	0 .		-	-	0	0	0	0 -	-	-	- 1	-		-
238	Mercuric(II) Cyanide	Hg(CN) ₂	pure		1, 2, 3, 4, 5	0		0	0) (-	0			0		_	- 0	-	0			-	0	0	0	0 -	. 0		-	-	-	-
239	Mercuric(I) Nitrate	$Hg_2(NO_3)_2$	sat.		1, 2, 3, 4, 5	0	0	0	0	6	\circ) -	-	0			0	0	0	6 6	-				-	0	0	0	0 -	0		-	-	9	-
240	Methanol	CH₃OH	pure		Ex 7, 8, 9, 10	-	-	-	-	- -	- -		-	2			0	-	-	- -	0	0		0	0	0	0	-	- C	_		-	0		0
241 242	Methyl Acetate	CH3CO2CH3 C6H5CH3	100		Ex 8, 10 Ex 8, 10	-	-	-	-	- -	- -		-	© O			0	-		- -	0	0 0		-	-	0	0	-	- -	3		0	_	~	-
242	Methyl Benzene Methyl Cyanide	CH ₃ CN	100		Ex 6, 10 Ex 8, 10	_	-	-	_				-	6			0	_		_ _	0	0		1 -	1 -	0	0		- -	. 3		101	_		-
244	Methyl Ethyl Ketone	CH ₃ COCH ₂ CH ₃	100		Ex 8, 10	_	-	-	-	- .			-	2			Ö	-		_ _	ŏ	0		-	-	o	ŏ	-	- C			- 1	0	_	0
245	Methyl Glycol	CH ₂ OCH ₂ CH ₂ OH	1.00		Ex 7, 8, 9, 10	_	-	-	-		- -		-	Ö			ŏ	-		_ _	ŏ	0 0		-	0	ŏ	ŏ	-	- 0			0	-		ŏ
246	Methyl Isobutyl Ketone	CH ₃ CH(CH ₃)CH ₂ COCH ₃			Ex 8, 10	-	-	-	-		- -		-	2			Õ	-			-	0		-	-	Ŏ	Õ	-		2		-	-	-	-
247	Methyl Pentanone	CH ₃ CH(CH ₃)CH ₂ COCH ₃		0.8	Ex 8, 10	-	-	-	-		- -		-	2)	0	0	-	-		-	0		-	-	0	0	-		2		-	-	0 -	-
248	Methylene Chloride	CH ₂ Cl ₂	100	1.33	-	-	-	-	-		- -		-	6		0	0	-		- -	-	0		-	-	-	0	-		3	-	-	-		-
249	Milk	Mixture			-	0	-	-	-) -		-	0		0	0			0 0	-	0			-	0	0	0	0 -	0		-	-		-
250	Mineral Oils	Mixture		4.04	6	-	-	-	-		\circ		0	0			0			0 0	0	0			0	0	0	-	- C			0	-		0
251 252	Mineral Oils Mineral Water	Mixture H ₂ O		1.01	Ex 8, 10 1, 2, 3, 4, 5, 6	0	0	0	0		- -) C		0	0			0			- - O O	0	0 0		- 0	-	0	0	0	0 0	0		0	- O	9	- O
253	Nail Polish Remover	CH ₃ COCH ₃	10		Ex 8, 10	-	-	-	-				-	0			0	-	-		0	0		_		0	0	-	- 0			-	0		0
254	Nail Polish Remover	CH ₃ COCH ₃	pure		Ex 8, 10	-	-	-	-		- -		-	2			Õ	-		_ _	ŏ	0		-	-	ŏ	ŏ	-	- 0			_	ŏ		Ö
255	Naphtha	Mixture			-	-	-	-	-		- -	- 0	0	Ō			Õ	-	-		Õ	0		0	0	O	Õ	-	- 0			0	-		O
256	Naphthalene	C10H8		1.15	5	-	-	-	-	- () (0	0	0	0	0	0	- 0	0	- -	0	0) -	-	-	-	0	-	0 0	0	-	0	-	0	0
257	Naphthenic Acid	Mixture	100	0.9	5	0		0	0		\circ		-	0		0	0		0	- 0	-	0		-	-	0	0	0	0 -	. 0	-	- 1	-	0 -	-
258	Nickel Chloride	NiCl ₂	20	1.22	1, 2, 4, 5	-	0	-	0) (-	-	-	-	O		O .	- 0	-	0 .			-	0	Ö	O	9 -	-	-	-	-		-
259	Nickel Nitrate	Ni(NO3)26H2O	35	1.38	1, 2, 3, 4, 5	0		0	0		$\mathbf{S} \mid \mathbf{S}$		-	0			0		_	- 0	-	0			-	0	0	0	9 -	0		-	-	0 -	-
260 261	Nickel Sulfate Nitric Acid	NiSO₄ HNO₃	10	1.21	1, 2, 3, 4, 5 1, 2, 3, 4, 5			0	0				1 -	0			0		0	- O		0				0	0	0	0 -			_	_	0 -	
262	Nitric Acid	HNO ₃	30	1.18	5	-	-	-	-		$\frac{1}{2}$		-	ŏ			ŏ			- 5	_	-			-	-	ŏ	-	ŏ -	. ŏ		- 1	-	-	_
263	Nitric Acid	HNO ₃	50	1.31	5	-	-	-	-	_ `	- 0		-	-	4		Õ	-	_	- (5)	-	-			-	-	ŏ	-	ŏ -	· j		1 - 1	-	ŏ -	-
264	Nitric Acid	HNO ₃	65	1.41	5	-	-	-	-		- C		-	-	4	6	0	-	-	- (5)	-	- 0		-	-	-	0	-	0 -	. 0	-	- 1	-	0 -	-
265	Nitric Acid	HNO ₃	-	1.5	5	-	-	-	-		- C) -	-	-	-	-	-	-	-	- S	-		- -	-	-	-	0	-	0 -	-	-	-	-		-
266	Nitrobenzene	C ₆ H ₅ NO ₂	pure	1.21	-	-	-	-	-		- -	_	0	0			0	-	-		0	0			-	0	0	-	- C			0	-		0
267	Nitrotoluene	C ₇ H ₇ NO ₂	pure	0.7	-	-	-	0	0		- C		0	6			0	-		- -	0	0			-	0	0	3	3 0			-	-		0
268 269	Octane Oleie Asid	C ₈ H ₁₈ C ₁₈ H ₃₄ O ₂	pure		Ex 7, 8, 9, 10	-	-	-	-		- -) C		0	0			0	- (- 0	0	0 0			0	0	0	-	- 0			0	-		0
270	Oleic Acid Oleum	H2SO4/SO3	pure	0.9	5		_	_	_) 0		-	0			0		-	- -	_)		-	-	0		0 -	_		-	_	0 -	-
	Oxalic Acid	(COOH) ₂	10		1, 2, 3, 4, 5	0	0	0	0) -	_	0			0		0	_ _	_	0			-	0	0	0	0 -	. 0	_		_	0	
272	Oxalic Acid	(COOH) ₂	sat.	1.65	1, 2, 4, 5	-		-	ŏ	-	5 6		-	-	-		Õ	o			-	0 .	- 0		-	0	Õ	ŏ	ŏ -		-	-	-		-
273	Paraffin Oil	Mixture	pure		1, 2, 3, 4, 5, 6	0		0	ŏ) (Ó		0				0	0	\circ		0) 0		0	Ŏ	0	0	ŏ c	0	0		-	0	
274	Peanut Oil	Mixture			-	0	0	0	-	- () -		-	0	-	0	0	0	0		0	0) -	0	0	0	0	0	$O \mid C$		0	0		0	0
275	Pentanol-1	CH ₃ (CH ₂) ₃ CH ₂ OH	pure		Ex 7, 8, 9, 10	-	-	-	-					2			0	-		- -		0) -	0	0	0	0	-	- C						0
276	Pentyl Acetate	CH3(CH2)3CH2COOCH3	pure	0.88	Ex 8, 10	-		-	-					6)							O () -			0	0	-					-	0 -	-
277	Perchloric Acid	HCIO ₄	20		1.1, 2.1, 5	-	0	-	0	6	\circ			-	-	-	0	0	0	- 6	-	6 -				0	0		0 -	-		-	-	- -	-
278 279	Perchloric Acid	HCIO₄	50 70		5	-	-	-	-	6) -		_	-		0	- 0		- 6 - 6	-	6 -				0	0	-	0 -		-	-	-		-
280	Perchloric Acid Perchloric Acid	HCIO ₄ HCIO ₄	sat.	1.55	5	_			_	6 .)		_			0		_	- 6		6 -	. "	_		0			9 -						
200	I GIGIIOTIC ACIU	HUIU4	Säl.	1.00			_			w .									_	- 0								_ [_		_		

Meaning of symbols: O = Resistant

"—" = Non-resistant ① = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period) Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Cł	emical Resis	tance Table						PP		B50	I P\	Lutz - I	Pump T			SS	НС	:	TR	Lutz - Flov	v Mete		VA		Hose	5				Nozzl	les			Othe Accesso	
	Drum and Container													-												hose	σ.								
	chloroethylene – S ea		ntration in %	rity kg/dm³			, RE-PP- P-MS		0 dd	dwnd					pot FV	, (A)	500		'OF	ВаFе	SaFe			hose	Se	nica	chemical hose	PP/FPM	PVDF/FPM Procs/	SS/FPM	ALU/NBR	Nozzle	Nozzle //	nectors	nectors
No.	Medium	Formula	Concentra	Spec. gravity	/c \		PP-MS-SS, MS, MP-PP-	PP-MS-HC	PP-SL-SS	Container B50 PP	PVDF-MS	PVDF-SL	Alu-MS	Alu-SL	SS-MS	SS-SL RE-SS-MS	MP-SS-MS HC-SL	R 50 PP	TR 120 PP TR 120 PVDF	PPO/SAN/BaFe PPO/PPS	PPS/LCP/BaFe	PPS/LCP	SS/PPS	PVC-Hose Mineral oil	Solvent ho	Universal cher	Special ch	Nozzle PP,	Nozzle PV	PTFE Nozzle SS/FP	Nozzle ALI	Automatic ALU/FPM	트립		Hose conr Brass
281	Perchloroethylene	C ₂ CI ₄	pure	S	™ No. 5		-	-		_	0	0	-	-	_	_) O	_	- 0		-		_		_	0	0	-	_	0 0	+	-	-	\rightarrow	O
282	Petrol	C ₅ H ₁₂ -C ₁₂ H ₂₆	pure		Ex 7, 8,		-	-		_	-	-	-	-			OC				0		0	- C		0	0	-		0 0			-		0
283	Petroleum	Mixture	pure			, 9, 10	-	-	- -	-	-	-	-	-			\circ		- -	- -			0	- C		0	0	-		0 0			-		0
284 285	Petroleum Ether	Mixture C ₆ H ₅ OH	pure 50	0.69	Ex 7, 8,	, 9, 10	-	-		-	-	-	-	0		_)))				0		0	- C) 0	0	0	-		0 0		0	-		0
286	Phenol Phenol	CeHsOH	90	1.07	- 1		_	-			-	-	0	0			$\frac{3}{3}$		_ _		10		0		-	10	0			0 0		10	_	0	0
287	Phosphoric Acid	H ₃ PO ₄	30	1.18	1, 2,	, 3, 4, 5	0	0	0	0	0	0	-	-			$\tilde{\mathfrak{o}} \mid \tilde{\mathfrak{o}}$		0 0	- 0) -	_	ŏ	ŏ	0	0	- 0		-	-	ŏ	-
288	Phosphoric Acid	H₃PO₄	50			, 3, 4, 5	Õ		0		O	O	-	-			o c		0 0	- 0		O) -	-	O	Õ	Õ	Õ	- 0		-	-	Õ	-
289	Phosphoric Acid	H ₃ PO ₄	85		5		0	0	\circ	0	0	0	-	-	0	0	\circ) (0 0	- 0	-	0	0	- -	-	0	0	0	0	- 0	- (-	-	0	-
290	Phosphoric Acid	H ₃ PO ₄	95	1.66	-		-	-			0	0	-	-	0	0	\circ		- O	- 0		0	-	- -	-	0	0	-	-	- 0	-	-	-	0	-
291	Phosphorous Oxichloride	POCI ₃	pure	1.57	5		0		\circ		0	0	-	-			\circ		\circ	- 6		6	0	- -	-	0	0	0	0	- 0		-	-	0	-
292	Phosphorous Trichloride	PCI ₃	pure	1.57	5		0		\circ		0	0	-	-			\circ		0 0	- 6		6	0	_ -	-	0	0	0	0	- 0		-	-	0	-
293	Photographic Developer	Mixture				, 3, 4, 5	0		\circ		0	0	0	0			$\frac{1}{2}$		0 0	- 0		O) -	-	0	0	0	-	0 0		0	0		0
294 295	Phthalic Acid	C ₈ H ₆ O ₄	50	1.59	3, 4, 3, 4,		2		$\begin{array}{c c} \circ & \circ \\ \circ & \circ \end{array}$		2	0	2	0)))		- -	- 3 - 3		-) -		0	0	0	-	0 0		-	0		0
296	Phthalic Acid Picric Acid	(NO ₂) ₃ C ₆ H ₂ OH	sat.	1.09	5, 4,	, 5	_	2	O C		Ö	0	2	-		-	$\frac{3}{3}$		- 0	- 6		6	0) - - -		0	0	0	0	O @		10	0	0	0
297	Pine Oil	Mixture	30		-		_	_		-	-	-	_	0			$\frac{3}{3}$		_ _	_ _			5	_ _		10	0			0 3		-	_		O
298	Potassium Bromate	KBrO₃	sat.		-		-	-	_ -	0	-	-	-	-	-	-		Ί.		- 0		-	-	- -	-	ŏ	ŏ	0	0		_	-	-	-	-
299	Potassium Bromide	KBr	10	1.37	1, 2,	, 3, 4, 5	0	0	0		0	0	-	-	0	0	\circ		0 0	- 0		-	0	o -	-	ŏ	ŏ	ŏ	ŏ	- 0) -	-	-	0	-
300	Potassium Bromide	KBr	sat.			3, 4, 5	Õ		o c		Õ	Ŏ	-	_			o c		0 0	- 0		- 1		5 -	-	Õ	Õ	ŏ	Õ	- 0		-	-	Õ	-
301	Potassium Carbonate	K2CO3	sat.		1, 2,	, 4, 5	-	0	- (0	0	0	-	-		-	- 0) (\circ	- 0	-	-) -	-	0	0	0	0		-	-	-	-	-
302	Potassium Chlorate	K ₂ CIO ₃	50		1, 2,	, 3, 4, 5	0	0	\circ)	0	0	0	0	0	0	\circ) (OC	- 0	-	-	0) -	-	0	0	0	0	0 0	-	0	0	0	0
303	Potassium Chloride	KCI	10			, 4, 5	-	0	- (0	О	-	-	-	-	- 0		O C	- 0		-) -	-	0	0	0	0		-	-	-	-	-
304	Potassium Chloride	KCI	sat.	1.17		, 4, 5	-	0	- (0	0	-	-			- 0		OC	- 0		-) -	-	0	0	0	0		-	-	-	-	-
305	Potassium Chromate	K₂CrO₄	40			, 3, 4, 5	0		\circ		0	0	0	0) O		0 0	- 0		1 1) -	-	0	0	0	-	\circ		0	0		0
306	Potassium Cyanide	KCN	50	4.04		, 3, 4, 5	0		$\frac{1}{2}$		0	0	-	-			$\frac{1}{2}$		$\frac{2}{2}$	- 0		-) -		0	0	2	9	- 0		-	-	9	-
307 308	Potassium Cyanide	KCN K2Cr2O7	sat.	1.31		, 3, 4, 5	0		$\begin{array}{c c} \circ & \circ \\ \circ & \circ \end{array}$		0	0	-	-)))		0 0	- 3 - 0		-) -) -	-	0	0	0	0	- 0		-	-	0	-
309	Potassium Dichromate Potassium Disulfate	K ₂ G ₂ O ₇	40	0.92		, 3, 4, 5	0		5 6		0	0	_	_			$\frac{3}{3}$		5 0	- 0) -) -	1 -	0	0	0	0	- 0		1 -		0	-
310	Potassium Ferricyanide	K₃Fe(CN) ₆	10	0.52		, 3, 4, 5	0		$\frac{3}{5}$		0	0	0	0		-	$\frac{3}{5}$		5 0	_ _		6) -		0	0	0				0	0	_	0
311	Potassium Ferricyanide	K₃Fe(CN)₅	20	1.11		, 3, 4, 5	ŏ		$\tilde{\mathbf{o}}$		ŏ	ŏ	ŏ	ŏ			$\tilde{o} \mid \tilde{o}$		5 6		-			ó -	_	ŏ	ŏ	ŏ		ŏ		lõ	ŏ		Ö
312	Potassium Ferricyanide	K₃Fe(CN) ₆	sat.			, 3, 4, 5	Õ		\tilde{o}		O	Ŏ	Õ	Ö			o o		0 0		-			5 -	-	O	Õ	ŏ	-	o o		Ŏ	ŏ		Ö
313	Potassium Ferrocyanide	K₄Fe(CN) ₆	10		5		0	0	\circ) -	0	0	0	0	0	0	\circ) (\circ		-	6	0	- -	-	0	0	0	0	0 0) -	0	0	0	0
314	Potassium Ferrocyanide	K4Fe(CN)6	16	1.11	5		0	0	\circ		0	0	0	0		0	\circ		OC		-	6	0	- -	-	0	0	0	0	0 0	-	0	0	0	0
315	Potassium Ferrocyanide	K4Fe(CN)6	sat.		5		0		\circ		0	0	0	0			\circ		O C	- 0		-	0	- -		0	0	0	-	\circ		0	0		0
316	Potassium Hydroxide	КОН	20	1.19	-		2		0		2	0	-	-			O C		- -	- 3		-	0	- -		0	0	2	2	- 2		-	-	0	-
317	Potassium Hydroxide	КОН	30	1.29	-		2		$\frac{1}{2}$		2	0	-	-			$\frac{1}{2}$		- -	- 3 - 3		-	2	- -		0	0	2	2	- 2		-	-	9	-
318 319	Potassium Hydroxide	KOH	60	1.63	-	4.5	2	② O	O C		0	0	-	-	2	0) - 0		- - O O	- 3 - 6		-	0	- -) -	-	0	0	② O	② O	- 2) -	-	-	0	-
320	Potassium Hypochlorite Potassium Iodide	KOCI KJ	50	1.55		, 4, 5 , 3, 4, 5	0		5 6		10	0	_	_	0	0	5 0		5 0	- 0		6) -) -	1 -	0	0	0	0	- 0	. -	1 -	_	0	-
321	Potassium Iodide	KJ	sat.	1.00		, 3, 4, 5	ŏ		$\tilde{\mathbf{o}}$		0	0	-	_			$\tilde{\mathfrak{I}}$		5 6	- 0				<u> </u>	-	ŏ	ŏ	ŏ	ŏ	- 0		-	-	ŏ	-
322	Potassium Nitrate	KNO ₃	10			, 3, 4, 5	ŏ		$\tilde{\mathbf{o}}$		ŏ	ŏ	0	0			\tilde{o}		5 5	0 0				<u> </u>		ŏ	ŏ	ŏ		olŏ	_	0	0		0
323	Potassium Nitrate	KNO ₃	24	1.17		, 3, 4, 5	Õ		o c		O	Ŏ	Õ	Ö			5 0		0 0	0 0				5 -	-	O	Õ	ŏ		o o		Ŏ	ŏ	Õ	O
324	Potassium Oxalate	$K_2C_2O_4H_2O$			5		0	0	\circ) 6	0	0	-	-	0	0	\circ) (\circ	6 6	6	6	0		-	0	0	0	0	- 0	- (-	-	0	-
325	Potassium Permanganate	KMnO ₄	6	1.04	5		0	0	O (6	0	0	0	0	0	0	\circ) (OC	- 6	0		0	- -	-	0	0	0	0	0 0	-	0	0	0	0
326	Potassium Permanganate	KMnO ₄	18		5		0		\circ			0	0	0		0	\circ		OC	- 6					-	0	0	0		0 0			0	0	0
327	Potassium Sulfate	K ₂ SO ₄	10	1.08		, 3, 4, 5, 6	0) (0	0	0			O) (O C	0 0			0) -	-	0	0	0		0 0		0	0	0	0
328	Propanol	C ₃ H ₇ OH	100		Ex 7, 8,		-		- -		-	-	-	-			O C		- -	- -		0		- -		0	0	-		0 0					0
329	Propionic Acid	CH ₃ CH ₂ COOH	50		Ex 8, 10		-	-	- -	-	-	-	-	-			\circ		- -		-	0	0	- -		O	0	-		- 0			-		-
330	Propionic Acid	CH₃CH₂COOH	pure		Ex 8, 10		-	-		-	-	-	-	-			O C)	- -		-	6		- -		0	0	-	-	- 0	-			0	-
331	Propylene Glycol	C ₃ H ₆ (OH) ₂	pure	1.04		, 3, 4, 5, 6			\circ		0			0			0 0		0 0			0	0) C			0			0 0	0				
332 333	Propylene Oxide	C3H6O	pure 10	0.83	Ex 8, 10	U	-		 O (6	-	- O	-	- O			0 0		 O O	 - 6						0	0	- O	- O	- 2 O O) –		- O		-
333	Pyrogallol Salad Oil	C ₆ H ₃ (OH) ₃ Mixture	10			, 3, 4, 5, 6	0						0)))			0 0		0	0) C					0	0 0					0
335	Salycilic Acid	C6H4OHCOOH	50	1.48	5					6			0				$\frac{3}{3}$	5	0 0	- ©		0 (0 (0)	0	- -		0	0	0	0	3 3					0
336	Sea Water	H ₂ O	30	1.40	1, 2,		-		- (Ö	0	0	-	-	-		- 0)	5 0	- 0		Ö	-	-) -	_	0	0	0	0	_ _	-	-	-	-	-
000	Our mater	.120			1, 2,	, ,, ,		9		, ,								,				9		_				9	9						

"—" = Non-resistant ① = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period) Meaning of symbols: O = Resistant Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

C	and Dariet	Tulala								_	Lutz - Pun	•				T			Flow Meter				Hoses					Nozzles			Oth	ner sories
CI	nemical Resist	ance lable				\vdash	PP		B50	PVI)F	Alu		SS	Н	IC	TR	ST	SL LM	UN \	/A	_			_						ALLES	Julies
Lut	z Drum and Container	pumps, Flow meter																						hose	9							
	cic Acid – T in(II)Chlor		tion in %	ity kg/dm³		s, RE-PP-	0	, PP-SL-HC	dwnd				i	(not Ex),	ν, ν		, /DF	ВаFе	BaFe			hose)Se	chemical	chemical hose	PP/FPM	PVDF/FFIVII	SS/FPM	ALU/NBR atic Nozzle	Nozzle //	nectors	connectors
No.	Medium	Formula	Concentration	Spec. gravity	Suitable Pump set	PP-MS-SS, MS, MP-PP-	PP-MS-HC	B2-PP-SL,	Container B50 PP	PVDF-MS	PVDF-SL	Alu-SL	SW-SS	-SS-SL (MP-SS-M	>L	TR 120 PVDF	PPO/SAN/BaFe	PPO/PPS PPS/LCP/BaF	PPS/LCP	SS/PPS PVC-Hose	Mineral oil	lvent h		Special ch	Nozzle PP	NOZZIE FV Nozzle Bra PTFE	Nozzle SS	Nozzle AL Automatic	ALU/FPM Automatic N ALU/EPDM	ise con	Hose con Brass
				S	ĕ× No.				_			₹ ₹		_		_		ᇤ					Sol			_		_	ž į	로 콘코	•	포윤
337	Silicic Acid	Si(OH) ₄	pure		1, 2, 3, 4, 5		0			0	0 -	. -		0			9 9	-	6 -		$\frac{1}{2}$		-		0) -	0	-	- -	0	-
338 339	Silicone Oil Silver Nitrate	(R ₂ SiO)x AgNO ₃	pure 8	1.07	1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5	0	0 0			0	0 -		0	0			0 0	O -	0 0		0 0		0		0		0 -	0		O -	0	O -
340	Soap Solution	Mixture	"	1.07	1, 2, 3, 4, 5	0	0 0			ŏ	0 -		ŏ	0			0 0	0	0 -		$\tilde{0}$		_		0		5 -	0	-		o	_
341	Sodium Acetate	CH₃COONa	10		5	0	0 0			Õ	0 -		Ö	Õ			00	-	0 -		5 -	-	-		Õ	_	5 -	O	-		O	-
342	Sodium Aluminate	$Na_2AI_2O_4$			1, 2, 3, 4, 5	0	0) ()	6	0	0 -	- -	0	0	0		0 0	-	6 -		O	-	-	0	0) -	0	-		0	-
343	Sodium Benzoate	C7H5NaO2	36		5	0	0			0	0 0		0	0			0 0	-	6 6) -	-	-		0		0 0	0	-	0 0	0	0
344	Sodium Benzoate	C7H5NaO2	sat.	4.07	5	0	0			0	0 0		0	0			0 0	-	6 -		2 -	-	-		0		2 0			$\frac{1}{2}$	0	0
345 346	Sodium Bicarbonate Sodium Dichromate	NaHCO ₃ Na ₂ Cr ₂ O ₇	10	1.07	1, 2, 3, 4, 5, 6	0	0 0			0	0 0		0	0			0 0	0	0 0) O O -	-	-		0			0		0 0	0	0
347	Sodium Hydrogen Sulphate	NaHSO ₄	50	1.16	1, 2, 3, 4, 5	0	0 0			ŏ	0 -	. -	ŏ	0			0 0	-	0 -		\tilde{o}	-			0		5 -	ŏ	-		o	-
348	Sodium Hydrogen Sulphite	NaHSO₃	"	10	1, 2, 3, 4, 5, 6	ő	0 0			ŏ	ŏ c		Ö	ŏ			0 0	- 1	o o		o o		-		ŏ		o o	l ŏ	0	0 0	Ŏ	0
349	Sodium Carbonate	Na ₂ CO ₃	25	1.27	1, 2, 3, 4, 5	0	0			0	0 -	- -	0	0	0) (0 0	0	0 -		0 0	-	-	0	0) -	0	-	- -	0	-
350	Sodium Chlorate	NaCIO ₃	25	1.23	1, 2, 3, 4, 5	0	0			0	0 -	- -	0	0			0 0	-	6 -		O		-		0) -	0	-	- -	0	-
351	Sodium Chloride	NaCl	20		1, 2, 4, 5	-	0 -	0		0	0 -	- -	-	-			0 0	-	0 -	0	- 0		-		0) -	-	-	- -	-	-
352	Sodium Fluoride	NaF	4	1.04	1, 2, 3, 4, 5	0	0 0		0	O ②	0 -	. -	O ②	0		_	0 0	-	0 -		$\begin{array}{c c} 0 & 0 \\ 0 & 0 \end{array}$	-	-		0) -	0	-	- -	0	-
353 354	Sodium Hydroxide Sodium Hydroxide	NaOH NaOH	10	1.16	3	2	2 0			2	O -		2	0))	_ _	_	2 -) O	-	1 -		0	_	2 - 2 -	2	-		0	_
355	Sodium Hydroxide	NaOH	50	1.53	3.1	2	2			2	0 -		2	0		- 1		_	② -		$\begin{array}{c c} \hline 0 \\ \hline \end{array}$		_		0		2 -	2	-		o	_
356	Sodium Hypochlorite	NaCIO	10		5	-		-	-	ŏ	ŏ -	. -	-	-		_	00	-	- -	6	- ŏ	-	-		ŏ		Š -	-	-	- -	-	-
357	Sodium Hypochlorite	NaCIO	12.5		5	-	- -	-	-	0	0 -	- -	-	-	- () (0 0	-		6	- 0	-	-	0	0	0) -	-	-	- -	-	-
358	Sodium Hypochlorite	NaCIO	20		5	-		-	-	0	0 -	- -	-	-			0 0	-		6	- O		-		О) -	-	-		-	-
359	Sodium Nitrate	NaNO ₃	45	1.37	1, 2, 3, 4, 5, 6	0	0			0	0 0			0			0 0	-	6 -		$0 \mid 0$		-		0		0 0			0 0	0	0
360	Sodium Nitrite	NaNO ₂	50	4.40	1, 2, 3, 4, 5, 6	0	0			0	0		0	0	- 1	-	0 0	-	0 -		$\frac{1}{2}$		-		0		O	0	0	0 0	0	0
361 362	Sodium Perchlorate Sodium Phosphate	NaClO ₄ Na ₃ PO ₄	25 10	1.18	1, 2, 3, 4, 5, 6	0	- 0			- O	0 -		© O	0		_	0 0	0	3 - O 6) -) 0	-	_		0		3 - O O	3	0	5 0	0	- O
363	Sodium Filosphate Sodium Silicate	2Na2OxSiO2	20	1.24	1, 2, 3, 4, 5, 6	0	0 0		0	0	0 -	. -	0	0		_	0 0	0	0 -		$\frac{3}{5}$	-	_		0		5 -	0	-		0	-
364	Sodium Sulfate	Na ₂ SO ₄	50	1.46	1, 2, 3, 4, 5, 6	ő	0 0			ŏ	0 0		ŏ	ŏ			ŏŏ	-	ŏ -		$\tilde{\mathfrak{o}} \mid \tilde{\mathfrak{o}}$	-	-		ŏ		o o		0	0 0	ŏ	0
365	Sodium Sulfide	NaS	16	1.16	1, 2, 3, 4, 5	0	0			0	0 -	-	0	0	- 1		0 0	-	6 -		0 0	-	-		0) -	0	-	- -	0	-
366	Sodium Sulfite	Na ₂ SO ₃	sat.	1.18	1, 2, 3, 4, 5	0	0			0	0 -	- -	0	0			0 0	-	O -		O		-		О) -	0	-		0	-
367	Sodium Thiosulfate	Na ₂ S ₂ O ₃	40		1, 2, 3, 4, 5, 6	0	0) 0	0	0	0		0	0			0 0	-	0 -		0 0		-		0	0	0			0 0	0	0
368 369	Solvent Naphtha	Mixture Mixture		0.72	Ex 7, 8, 9, 10	0	0 0	-	-	-	0 0) 0	0	0)) (0 0	-	- 0) -) -	0	0	_	0	0	- 0	0		O -	0	0
370	Spindle Oil Stearic Acid	CH ₃ (CH ₂) ₁₆ CO ₂ H	pure 100	0.94	1, 2, 3, 4, 5, 6	0	0			0	0 0		0	0			0 0	0	0 0		$\frac{1}{2}$		0		0		5 5	0	-	5 0	0	0
371	Styrol	C6H5-CH=CH2	pure	0.91	Ex 8, 10	-		-	-	-		. -	ŏ	0		5		-	- 0		5 -	-	-		0	-	- 0) -	O	ŏ
372	Succinic Acid	C ₄ H ₆ O ₄	50	1.06	1, 2, 3, 4, 5	0	0) 0	0	0	0 0	0	0	O			00	0	0 0		0	-	-	_	O	0	O	0	- () -	O	Õ
373	Sulphite Liquor	Ca(HSO ₃) ₂	10		1, 2, 3, 4, 5	0	0			0	0 -	- -	0	0			0 0	-	O -		\circ		-		0) -	0	-		0	-
374	Sulphite Liquor	Ca(HSO ₃) ₂	sat.		1, 2, 3, 4, 5	0	0)	0	0	0 -	- -	0	0	-	-	0 0	-	0 -		\circ	-	-		0) -	0	-		0	-
375	Sulphur Chloride	S ₂ Cl ₂	10	1.69	5	-		-	-	0	0 -	-	-	-		2	- 0	-	6 -	6	- -	-	-		0	- () -	-	-		-	-
376 377	Sulphur Ether Sulphuric Acid	(C₂H₅)₂O H₂SO₄	pure 40	0.71	Ex - 1, 2, 4, 5	-	0 -	0	0	0	0 -		6	0)) (0 0	_	0 -	0	O - - O	_	_		0	0	- 0	3	_		0	O -
378	Sulphuric Acid	H2SO4	80	1.66	5		0 -	10		0	0 -	. -	_	_			3 3	-	0 -	_	- -	-	-		0		5 -	-	-		-	_
379	Sulphuric Acid	H ₂ SO ₄	90	1.73	5	0	0 0			Õ	0 -		0	0			0 0	-		- (o -	-	-		Õ		5 -	0	-		0	-
380	Sulphuric Acid	H ₂ SO ₄	98	1.84	5	-		-	-	0	0 -	- -	0	0) C	- O	-) -	-	-		0) -	0	-		0	-
381	Sulphurous Acid	H ₂ SO ₃	50		1, 2, 3, 4, 5	0	0			0	0 -	- -	0	0			0 0	-	0 -		O		-		0) -	0	-		0	-
382	Table Salt	NaCl	25		1, 2, 4, 5	-	0 -			0	0 -	- -	-	-			0 0	-	0 -		- 0		-		0) -	-	-	- -	-	-
383	Tannic Acid	H ₇₆ H ₅₂ O ₄₆	50		1, 2, 3, 4, 5	0	0 0			0	0 -	-		0			$\frac{9}{3}$	-			$\frac{1}{2}$		-		0		2 -	0	-		0	-
384 385	Tanning Extracts. vegetable Tartaric Acid	Mixture C₄H₀O₅	sat.	1.76	1, 2, 3, 4, 5, 6		0 0			0	0 -						0 0	© O	6 6 O -) O O -		-		0		0 0	0	0	0 0	0	O -
386	Tetrachloroethane	CI ₂ CHCHCI ₂	pure	1.6	-	-	- -	-	-	-	0 -	. -					- -	-	- -		5 -	-	-		0		3 -	3	-		0	_
387	Tetrachloromethane	CCI ₄	pure	1.59	5	-	- -	-	-	0	o -	. -					- 0	-			<u>5</u> -		-		ŏ		Ď -		-		Ŏ	-
388	Tetrahydrofuran	C ₄ H ₈ O	pure		Ex 8, 10	-		-	-	-		-		0	0) C		-		0	- C		-	0	0	-	- -	3	-		0	-
389	Tetralin	C10H12	100	0.97	-	-		-		-	- 0) 0				- 1		-	- 0) -		-		0		- 0		- (O -	0	0
390	Thionyl Chloride	SOCI ₂	pure	1.66	-	-	- -	-		-		- -				-		-	0 -) -	-	-		0		- -	0	-		0	-
391	Thiophene	C ₄ H ₄ S	pure		Ex 8, 10	-	- -	-	-	-			6	0				-) -		-		0		- -	3	-	- -	0	-
392	Tin(II)Chloride	SnCl ₂	20	1.17	1, 2, 4, 5	-	0 -	0	0	0	0 -	-	-	-	- () (C	0 0	-	O -	0	- O	-	-	0	0	0) -	-	-		-	-

"-" = Non-resistant ① = conditional stable (danger of discoloration and for embrittlement in dependence of the short working period) Explanation to the set-recommendation: "Pump set no".1 = PVC-Hose conditional stable (danger of discoloration and for embrittlement in dependence of the short working period)

Chemical Resistance Table						PP		B50	PVE	Lutz - Pu OF	mp Tube Alu		SS		НС	Т	R		SL LM		VA		ŀ	loses					Noz	zles				Other cessor
utz Drum and Container pumps, Flow met	r	13					우																		hose	esc								
oluene – Z inc Sulfate	Concentration in %	Spec. gravity kg/dm ³		SS, RE-PP-		S	L, PP-SL-HC	r pump	60				B2-SS-SL (not Ex), SS-SI	IS,	2	٠ هـ	VDF	I/BaFe	, /BaFe			ep.	il hose			hemical hose	P/FPM	PVDF/FPM Brass/	C/EDM	NITPINI NITPINI	c Nozzle	ALU/FPMI Automatic Nozzle	Hose connectors	connectors
Medium Formula	Concentr	Spec. gra	Suitable Pump set No.	PP-MS-SS, B	MS, MP-PP PP-MS-HC	PP-SL-SS	B2-PP-SL,	Container B50 PP	PVDF-MS	PVDF-SL	Alu-MS	SS-MS	B2-SS-S	RE-SS-MS,	HC-SL	TR 50 PP TR 120 PP	TR 120 PVDF	PPO/SAN/BaFe	PPO/PPS PPS/LCP/BaFe	PPS/LCP	SS/PPS	PVC-Hose	Mineral oil h	Solvent hose	Universal	Special chen	Nozzle PP/FPM	Nozzle PVDF/F Nozzle Brass/	PTFE Nozzlo CC/EDM	NOZZIE SS/FFINI	Automatic	Automati	Hose cor	SS Hose cor
Medium	pure 50 pure 50 pure 100 as 3 s pure 20 pure 20 75 10 sat.	0.87 0.98 1.62 1.69 1.48 1.46 1.43 1.13 0.73 0.86	EX 8, 10													000000000000000000000000000000000000000					000 0000000000000000000000000000000		- O O	- 0 0 0							- C C			